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Notorious problems

Relativistic QFTs in (R4,g) describing long range forces (QED) exhibit

abundance of sectors with given total charge (((((
((hhhhhhhsuperposition

massless “infrared clouds” ���
��XXXXXparticles

spontaneous breakdown of Lorentz symmetry ���HHHspin
infraparticles ���XXXmass
no “localizable” charged fields (((((hhhhhstatistics

Theory in conflict with experiment? Workaround:

ad hoc selection of sectors (choice of gauge)
introduction of fictitious (photon) masses
inclusive processes (splitting into “soft” and “hard” contributions)

Conceptually unsatisfactory; many unanswered questions!
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Ingredients for solution

(1) Arrow of time
time

space 
a

V

Experiments take place in future lightcones V over some spacetime point a.
Impossible to make up for missed measurements in the past of a.
Theory only needs to describe and explain data taken in lightcones V .
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Ingredients for solution

(2) Huygens Principle

space 

V

time

Outgoing radiation/massless particles created in the past of apex a
escape observations in V (propagate with velocity of light c); as a
consequence infrared clouds cannot be discriminated in V
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Ingredients for solution

(3) Nature of charges

space

time

Total charge can be determined in any V (speed less than c)
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Framework

Observables of a (given) QFT

generate a unital C*–algebra A ⊂ B(H)

are localized in space–time regions O (Heisenberg picture)

O 7→ A(O) ⊂ A

comply with Einstein causality (locality)

[A(O1), A(O2)] = 0 if O1×O2 (spacelike separation)

are covariant under automorphic action α of the Poincaré group

αλA(O) = A(λO) , λ ∈ P↑+
.

= R4 o L↑+

admit vacuum state Ω ∈ H and unitary representation U of P↑+

U(λ)AΩ = αλ(A)Ω , λ ∈ P↑+, A ∈ A

spectrum condition, uniqueness of vacuum, Reeh–Schlieder property . . .
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Basic facts

In the following V is kept fixed

Fact [Longo 1979]: Let R(V ) = A(V )′′. There are the alternatives
(a) R(V ) = B(H)

(b) R(V ) is a factor of type III1 (with separable pre–dual)

Examples

(a) theories of massive particles (mass gap)
⇒ no loss of information by delayed measurements

(b) theories including massless particles
⇒ incomplete information due to outgoing radiation from the past
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Basic facts

Physical operations in V =̂ group of inner automorphisms InA(V )

Fact [Kadison 1957]: In case (a) InA(V ) acts transitively (adjoint
action) on pure normal states.

⇒ Concept of superselection sector of physical state space

Fact [Connes + Størmer 1987]: In case (b) InA(V ) acts almost
transitively (adjoint action) on normal states.

⇒ Concept of charge classes

Focus on theories with massless particles, i.e. on case (b)
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Charge classes

Definitions Let ϕ be a state on A(V )

ϕ is said to be elemental if it is of type III1 (GNS)
charge class of such ϕ is the norm closure of ϕ ◦ InA(V )

Example: vacuum ω = 〈Ω · Ω〉 � A(V ); charge class =̂ neutral states
(unites abundance of sectors differing only by “infrared clouds”)

Question Other charge classes of interest? Physics!
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Charge classes

Passage to charge classes of interest can be accomplished by limits of local
operations on some Cauchy surface (time–shell) in V :

Create a pair of opposite charges •∼• and shift unwanted charge to spacelike
infinity (lightlike boundary of V ) within a given hypercone L

time

space 

time

space 

L
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Charge classes

hypercone ≡ causal completion of a pointed convex hyperbolic cone formed
by geodesics on some time–shell

(Beltrami–Klein model: hyperbolic cone =̂ truncated Euclidean cone)

12 / 16



Charge classes

Formalization: Given L there is a sequence {Ad Wn ∈ InA(L)}n∈N

σL(A)
.

= lim
n

Ad Wn (A) exists, A ∈ A(V )

(convergence in strong operator topology) and ω ◦σL describes elemental
state in target charge class

Properties:
(a) σL : A(V )→ R(V ) morphism

(b) σL � A(Lc) = ι (identity map) if L×Lc

(c) σL (A(Lb))′′ ⊆ R(Lb) if L ⊆ Lb (equality: σL simple morphism)

(d) for given charge class and any L1,L2 there are corresponding
morphisms σL1 ' σL2 with intertwiners W ∈ R(V )

Remarks: (a) to (c) express the fact that charges can be created in any L, whereas
assumption (d) says that the resulting infrared clouds cannot be discriminated in V .
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Analysis

Familiar input: Haag–duality rephrased for lightcones [Camassa]

Complete results for morphisms describing simple charge classes

can be “composed”, σ1, σ2 → σ1 •σ2 ' σ12 (addition of charge content)
can be “inverted”, σ → σ and σ •σ = σ •σ = ι (charge conjugation)
can be “exchanged”, σ1 •σ2 ' σ2 •σ1, intertwiner W (σ1, σ2) ∈ R(V );
if σ1 ' σ2 and L1×L2 then W (σ1, σ2) ∈ {±1} (Bose/Fermi statistics)
σ, σ obey same statistics
{simple morphisms} / ' form abelian group, dual of compact abelian
group (global gauge group)

properties do not depend on chosen lightcone V
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Analysis

Spacetime symmetries: V admits only semigroup action of S↑+
.

= V + o L↑+

Definition A simple morphism σ is said to be covariant if there exists a
family of “transported” morphisms λσ ' σ such that

λσ ◦αλ = αλ ◦σ , λ ∈ S↑+

and αµ(Wλ) ∈ R(V ) are intertwiners between µλσ and µσ, µ, λ ∈ S↑+

Results Covariant simple morphisms σ

are stable under composition and conjugation

determine unique unitary representations Uσ of (the covering of) the full
Poincaré group P̃↑+ = R4 o L̃↑+ such that

Uσ(λ̃)σ(A)Uσ(λ̃)−1 = σ(αλ(A)) , λ̃ ∈ S̃↑+ , A ∈ A(V )

comply with relativistic spectrum condition, sp Uσ � R4 ⊂ V +

describe states with fluctuating energy content

Covariant charge classes have all properties expected from physics!
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Summary

There is progress in understanding the general structure of
physical states in QFTs with long range forces (simple charges)
Origin of infrared difficulties can be traced back to unreasonable
idealization of observations covering all of Minkowski space
Restriction to observables in a lightcone V amounts to a
meaningful geometric (Lorentz invariant) infrared cutoff
Pertinent algebras of observables A(V ) are highly reducible
(due to loss of information about radiation created in the past)
Information obtainable in V suffices to determine sharply the
charges, their statistics and the underlying global gauge group
Information also fixes representations UV of the Poincaré group
indicating the (fluctuating) energy–momentum content in V

Conjecture: Infraparticle problem (failure of Wigner particle concept
in Minkowski space) disappears in the representations UV
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