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Introduction

Conformal nets = description of (chiral) 2D CFT by means of algebras of
bounded operators on Hilbert spaces (operator algebras: C*-algebras and
von Neumann algebras).

Noncommutative geometry = study of operator algebras from a
geometric point of view and of geometry from an operator algebraic
point of view → noncommutative generalization of classical geometry.
Here, in many cases, “noncommutative” should be understood in the
weaker form “not necessarily commutative”

The theory of conformal nets is deeply related with various branches of
the theory of operator algebras and in particular with subfactor theory.

Until recently, the possible relations between conformal nets and
noncommutative geometry have not been investigated.



Aim of this talk: illustration of some of the main ideas underlying recent
results in this direction following the “noncommutative geometrization
program” for CFT through conformal nets an their representations
(theory of superselection sectors) → connections between subfactor
theory and noncommutative geometry.

This program was first proposed in Longo: CMP 2001, in agreement with
previous suggestions by Doplicher (1985), and later developed in various
directions in

I Longo, Kawahigashi: CMP 2005

I Carpi, Longo, Kawahigashi: AHP 2008

I Carpi, Hillier, Longo, Kawahigashi: CMP 2010

I Carpi, Conti, Hillier, Weiner: CMP 2013

I Carpi, Conti Hillier: AFA 2013

I Carpi, Hillier, Longo, Kawahigashi, Xu: arXiv:1207.2398

I Carpi, Hillier, Longo: arXiv:1304.4062

I Carpi, Weiner: In preparation



Classical mechanics

Motion of a classical particle on R: p = momentum, q = position.

Classical phase space: X = {(p, q) : p ∈ R, q ∈ R} = possible initial data
for the Hamilton equations.

Observables: functions F : X → R. They form a commutative algebra
over R (with obvious pointwise operations e.g.
FG (p, q) := F (p, q)G (p, q) ). Special cases: (t = 0) momentum
P : (p, q) 7→ p and position Q : (p, q) 7→ q. Its complexification given by
functions F : X → C is a ∗-algebra with ∗-operation given by complex
conjugation F ∗(p, q) = F (p, q). Observables must be real functions ↔
F = F ∗.

States: Probability measures on X . The mean value of the observable F
in the state µ is given by 〈F 〉µ =

∫
X

F dµ.
medskip
Pure states: Dirac measures δx , where x = (p, q), on X .∫
X

F dδx = F (x).

Pure states ↔ Optimal knowledge ↔ Uncertainty free i.e.

∆µF :=
√
〈F 2〉µ − 〈F 〉2µ = 0 (standard deviation = 0) for all observables

F if µ = δx represents a pure state.



Quantum mechanics

Heisenberg uncertainty relation: For any physical state S the standard
deviations ∆SQ, ∆SP of the position and momentum observables
obtained by the statistics on experimental data must satisfy

∆SQ∆SP ≥ ~
2
, where ~ =

Planck constant

2π
∼ 10−34 J · s

This is a fact of nature → new physics, new mathematical formalism.

Solution:

I Observable ↔ selfadjoint operator A = A∗ on a complex Hilbert
space H

I Pure states ↔ unit vector ψ ∈ H
I Mean value ↔ 〈A〉ψ = (ψ,Aψ)

I Standard deviation ↔ ∆ψA :=
√
〈A2〉ψ − 〈A〉2ψ.



A, B selfadjoint operators on H with commutator [A,B] := AB − BA ,
ψ ∈ H, ‖ψ‖ = 1, then the Cauhy-Schwarz inequality →

∆ψA∆ψB ≥ 1

2
〈[A,B]〉ψ

Hence noncommutativity → uncertainty relations.
The Heisenberg uncertainty relation is satisfied for operators Q, P
satisfying the canonical commutation relations

[Q,P] = i~1 ↔ “Noncommutative phase space”

There is essentially a unique (up to unitary equivalence)“nice solution”
(the Schrödinger representation):

H = L2(R, dq), (Qψ)(q) = qψ(q), (Pψ)(q) = −i~
d

dq
ψ(q)

Here Q,P are unbounded, densely defined selfadjoint operators.



Operator algebras

Message from quantum mechanics: ∗-algebras of operators A : H → H
give a noncommutative analogues of the ∗-algebras of functions
F : X → C. Real functions F = F ∗ correspond to selfadjoint operators
A = A∗.

Semplification: consider only bounded operators A ∈ B(H) e.g. replace
the observable Q by a f (Q) with some increasing f : R→ (0, 1)
(different labels of the experimental results).

B(H) is an (associative) ∗-algebra with identity 1. It has various natural
topologies, e.g. the norm topology and the strong operator topology.

A (selfadjoint) operator algebra is a ∗-subalgebra A ⊂ B(H) . A is said
to be unital if 1 ∈ A.

I A is a C*-algebra it is a closed subset of B(H) with respect to the
norm topology.

I A is a von Neumann algebra if it is unital and it is a closed subset of
B(H) with respect to the strong operator topology.



We have defined C*-algebras and von Neumann algebras as represented
in a given Hilbert space. In fact they can be characterized as abstract
Banach algebras. In any case one can consider different Hilbert space
representations π : A→ B(Hπ) of a given operator algebra A.

Besides the quantum mechanics the formula operator algebras =
noncommutative generalization of function algebras is strongly supported
by the following fundamental result

Theorem (Gelfand-Naimark 1943)

Every commutative unital C*-algebra A is isometrically ∗-isomorphic to
the algebra C (X ) of continuous complex valued functions on a compact
Hausdorff space X (the spectrum of A). Every compact Hausdorff space
X arises in this way. A is separable if and only if X is metrizable. (For
non unital A there is a similar result with X locally compact)

Accordingly: C*-algebras ↔ Noncommutative topology



Although every von Neumann algebra is a unital C*-algebra the
commutative von Neumann algebras (on a separable Hilbert space) are
best described by the following theorem

Theorem

Every commutative von Neumann algebra A on a separable Hilbert space
H is isometrically ∗-isomorphic to the algebra L∞(X , µ) for some
metrizable compact space X and some regular Borel probability measure
µ on X . Every every pair (X , µ) with these properties arises in this way.

Accordingly: von Neumann algebras ↔ Noncommutative measure (and
probability) theory



K-theory

A central example of noncommutative topology is K-theory for
C*-algebras (more generally for locally convex algebras).

If X is a compact Hausdorff space the equivalence classes of complex
vector bundles over X generate an abelian group K 0(X ) through the
operation [E ] + [F ] = [E ⊕ F ] .

If A is a unital C*-algebra one can define an abelian group K0(A)
generated by suitable equivalence classes of projections M∞(A) (the
∗-algebra of infinite matrices over A with finitely many nonzero entries)
and a natural operation +.

If A is commutative and X is the spectrum of A then K0(A) = K 0(X )

Remark: one can consider K-theory also for algebras A that are not
C*-algebras but that are locally convex algebras, e.g. A = C∞(X ) with
X smooth compact manifold.

K-theory plays a very important role in the theory operator algebras e.g.
in the classification of C*-algebras and in noncommutative geometry.



Noncommutative geometry

Spectral triples: (A,H,D) also called K-cycles.

I A unital ∗-algebra on H
I D selfadjoint operator on H with compact resolvent, with domain

dom(D) ⊂ H (the Dirac operator) such that, [A,D] is defined and
bounded on dom(D).

The spectral triple is said to be even if there is selfadjoint operator Γ
(grading operator) such that Γ2 = 1, ΓDΓ = −D and [Γ,A] = {0}.

The spectral triple is said to be θ-summable if Tr(e−βD
2

) < +∞ for all
β > 0.

Remark: In general A is not a C*-algebra.

Remark: It will be important to consider families of spectral triples over
the same algebra A by representing the latter in different Hilbert space.
To emphasis this fact we will sometime use the notation (A, (π,H),D)
for a spectral triple, where π is a representation of A on H.



Commutative example: Let S1 = {z ∈ C : |z | = 1} (z ∈ S1 ↔ z = e iθ,
θ ∈ R)

I H = L2(S1) (with normalized Lebesgue measure dθ
2π )

I A = C∞(S1) (acting on L2 functions by pointwise multilication); it
is a locally covex algebra

I D = −i d
dθ

Theorem (Connes 2013)

Let (A,H,D) be a spectral triple with A commutative + other
conditions. Then A = C∞(X ) for some compact oriented smooth
manifold X . Moreover, every compact oriented smooth manifold X
appears in this way.

Accordingly: Spectral triples ↔ Noncommutative differential geometry.



Entire cyclic cohomology

The entire cyclic cohomology of a locally convex algebra A is a
cohomology defined by certain sequences φ = (φn) of multilinear forms
on A entire cochains).

I CE e(A) ≡ even entire cochains φ = (φ2n)

I CE o(A) ≡ odd entire cochains φ = (φ2n+1)

I ∂ : CE e(A)→ CE 0(A), ∂ : CE o(A)→ CE e(A) ≡ boundary
operator

I (HE e(A),HE o(A)) ≡ entire cyclic cohomology ≡ equivalence
classes of cocycles (∂φ = 0)

Given an even cocycle φ ∈ CE e(A) ∩ ker(∂) and an idempotent
e ∈ M∞(A) one can define a complex number φ(e) ∈ C which turns out
to depend only on the cohomology class of φ in HE e(A) and on the
K-class of e in K0(A) (pairing with K-theory).



JLO cocycle and index pairing

I JLO ≡ Jaffe, Lesniewski, Osterwalder

I A ≡ locally convex algebra

I (A, (π,H),D) ≡ even θ-summable spectral triple such that
A 7→ π(A), A 7→ [D, π(A)] are continuous maps : A→ B(H).

I (A, (π,H),D) 7→ τ . τ ∈ CE e(A) ∩ ker(∂) even cocycle. (the JLO
cocycle).

I τ(e) ∈ Z for all idempotents in M∞(A) = ∪r∈NMr (A) (index
pairing).

I e ∈ A idempotent H± := ker(Γ∓ 1) then

τ(e) = dim ker
(
(π(e)Dπ(e))|π(e)H+

)
− dim ker

(
(π(e)∗Dπ(e)∗)|π(e)H−

)
Fredholm index. A similar formula holds for idempotents in Mr , r ∈ N.



Classical field theory

From now on ~ = 1 and speed of light = 1.

I Ms ≡ s-dimensional Minkowski spacetime (s = 1 + d) with points
x = (t, x) ∈Ms

I Φ(x) ≡ field strenght at the spacetime point x . Φ(x) is an
observable hence a functional : X → R, X = phase space = {(ϕ, π)}
= initial data. This means that x 7→ Φ(x)[(ϕ, π)] is the solution of
the wave equation with initial data Φ(0, x)[(ϕ, π)] = ϕ(x),
∂tΦ(0, x)[(ϕ, π)] = π(x) .

I Infinitely many degrees of freedom ⇒ the phase space X is an
infinite-dimensional manifold.

I The field Φ(x) at different spacetime points correspond to different
observables which are measurable within different spacetime regions.

I Other observables are given by smeared fields
Φ(f ) :=

∫
Ms
Φ(x)f (x)dx , f ∈ C∞(Ms).

I If suppf ⊂ O ⊂Ms then Φ(f ) is measurable within the spacetime
region O.

I Instead of Ms one can consider a curved spacetime M.



Quantum field theory

I x 7→ Φ(x) cannot be an operator valued function. In fact it gives an
operator valued distribution (Wightman field) f 7→ Φ(f ) ,
f ∈ C∞c (Ms). Typically the smeared field Φ(f ) is an unbounded
operator.

I As in the case of finitely many degrees of freedom we can restrict to
bounded functions of Φ(f ).

I A(O) ≡ von Neumann algebra generated by the bounded functions
of the operators Φ(f ) with suppf ⊂ O, O ⊂Ms open bounded
spacetime region ≡ algebra generated by observables measurable
within O.

I O 7→ A(O) ≡ net of operator algebras (Haag-Kastler net) ⇒
algebraic quantum field theory: Haag + Araki, Kastler, Schroer .....

I Locality: [A(O1),A(O2)] = {0} if O1 is spacelike separated from
O2.



Conformal nets on S1

I Two-dimensional CFT ≡ quantum field theories on M2 with scaling
invariance ⇒ certain relevant fields called (the chiral fields) depend
only on x − t (right-moving fields) or on x + t (left-moving fields).

I Chiral CFT ≡ CFT generated by left-moving (or right-moving) fields
only. Chiral CFTs can be considered as QFTs on R and by
conformal symmetry on its compactification S1. Hence we can
consider quantum fields on the unit circle Φ(z), z ∈ S1 and the
corresponding smeared fields Φ(f ), f ∈ C∞(S1).

I The smeared fields Φ(f ) generate conformal nets of von Neumann
algebras on S1 A : I 7→ A(I ), I ∈ I (I ≡ family of open nonempty
nondense intervals of S1), acting on a separable Hilbert space HA
(the vacuum Hilbert space).

I Conformal nets on on S1 can be defined axiomatically.



Axioms of conformal nets on S1

I A. Isotony. I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅⇒ [A(I1),A(I2)] = {0}
I C. Conformal covariance. There exists a projective unitary rep. U of

Diff(S1) on HA such that

U(γ)A(I )U(γ)∗ = A(γI )

and
(γ(z) = z for all z ∈ S1 r I )⇒ U(γ) ∈ A(I ).

I D. Positivity of the energy. U is a positive energy representation,
i.e. the self-adjoint generator L0 of the rotation subgroup of U
(conformal Hamiltonian) has nonnegative spectrum.

I E. Vacuum. Ker(L0) = CΩ, where Ω (the vacuum vector) is a unit
vector in HA.

I F. Irreducibility. HA and {0} are the only closed subspaces invariant
for the action of all the algebras A(I ).



Virasoro algebra

I The projective unitary representation U of Diff(S1) gives rise to a
representation on (a dense subspace) of HA of the Virasoro algebra

[Ln, Lm] = (n −m)Ln+m +
c

12
(n3 − n)δ−n,m1 n,m ∈ Z

with central charge c .

I The Virasoro field L(z) =
∑

n∈Z Lnz−n−2 is the chiral
energy-momentum tensor of the theory.

I If the representation of the Virasoro algebra on HA is (topologically)
irreducible then the net A is generated by the field L(z) and is called
the Virasoro net with central charge c



Representations of conformal nets

I A representation of a conformal net A on S1 is a family
π = {πI : I ∈ I} of representations πI of A(I ) on a common Hilbert
space Hπ such that I1 ⊂ I2 ⇒ πI2|A(I1) = πI1 .

I The equivalence class [π] of an irreducible representation on a
separable Hπ is called a sector of the conformal net A.

I The identical representation π0 of A on the vacuum Hilbert space
HA is called the vacuum representation and the corresponding
sector [π0] the vacuum sector.

I π is said to be localized in a given interval I0 if Hπ = HA and
πI1 (x) = x whenever I1 ∩ I0 = ∅ and x ∈ A(I1). Then it follows that
πI (A(I )) ⊂ A(I ) for all I containing I0, namely πI is an
endomorphism of A(I ) for all I ⊃ I0.



Universal algebras and DHR endomorphisms

The universal C*-algebra of A (Fredenhagen) can be defined as the
unique (up to isomorphism) unital C*-algebra C∗(A) such that

I there are unital embeddings ιI : A(I )→ C∗(A), I ∈ I such that
ιI2|A(I1) = ιI1 if I1 ⊂ I2, and all ιI (A(I )) ⊂ C∗(A) together generate
C∗(A) as a C*-algebra;

I for every representation π of A on Hπ, there is a unique strongly
continuous representation (denoted by the same symbol)
π : C∗(A)→ B(Hπ) such that πI = π ◦ ιI , I ∈ I.

The universal von Neumann algebra of A is the so called enveloping von
Neumann algebra of C∗(A). It can be defined as the unique (up to
isomorphism) unital von Neumann algebra W ∗(A) such that

I C∗(A) embeds in W ∗(A) as a strongly dense subalgebra.

I For every representation π of C∗(A) on Hπ, there is a unique
representation (denoted by the same symbol) π : W ∗(A)→ B(Hπ)
extending π and which is continuous when W ∗(A) and B(Hπ) are
endowed with the strong operator topology.



We will sometime indentify ιI (A(I )) with A(I ) so that the latter will be
considered as a subalgebra of C∗(A) and hence of W ∗(A).
There is a canonical correspondence between localized representations of
a conformal net A and DHR (localized and transportable)
endomorphisms of C∗(A). If π is a representation of A localized in I ∈ I
then the corresponding DHR endomorphism ρ satisfies

π = π0 ◦ ρ

The DHR endomorphism corresponding to π0 is the identical
endomorphism ι.

DHR ≡ Doplicher, Haag and Roberts.



The geometrization program

I Consider the algebras associated to a conformal net A
(A(I ), I ∈ I; C∗(A); W ∗(A) . . . ) as algebras of functions on an
infinite-dimensional manifold (the phase space of the theory)

I Use the representation theory of A to define θ-summable spectral
triples on appropriate smooth/differentiable subalgebras.

I Consider the corresponding JLO cocycle as noncommutative
geometric invariants associated to interesting families of
representations and find examples where one can prove, using the
index pairing with K-theory, that different representations of the net
give rise to different entire cohomolgy classes.

I Strategy: use supersymmetric extensions of the conformal
symmetry: N = 1 or N = 2 super-Virasoro algebras

I Related noncommutative topological investigations: study the action
of DHR endomorphism on suitable algebras associated with A and
investigate on the possibility to get interesting actions on the
corresponding K-theory. Analyze possible KK-theoretical
interpretations.



Few more details

Let A be a conformal net admitting, in an appropriate sense, a
supersymmetric extension of the conformal symmetry. Then, in various
cases one can prove that the net admit special representations π (that I
will call here minimally reducible Ramond type representations) with the
following properties:

I Hπ is graded by a selfadjoint unitary Γπ commuting with π(W ∗(A))

I There is a selfadjoint operator Qπ (the supercharge operator)
anti-commuting with Γπ and such that Q2

π = Lπ0 − c
241, where Lπ0 is

the conformal Hamiltonian for the (covariant) representation π.

I Tr(e−βL
π
0 ) < +∞ for all β > 0.

I The subrepresentations π± of W ∗(A) on Hπ,± := ker(Γπ ∓ 1) are
irreducible and mutually inequivalent.

Remark. These representations arise from soliton representations of a
graded-local superconformal extension F ⊃ A.



We considered two strategies.

Strategy 1.

I ∆R ≡ family mutually inequivalent minimally reducible Ramond
type representations.

I A∆R
≡ {A ∈W ∗(A) : [Qπ, π(A)] bounded on dom(Qπ) ∀π ∈ ∆R}

I Natural locally convex topology on A∆R
.

I (A∆R
, (π,Hπ),Qπ)) θ-summable even spectral triple with the right

continuity properties for all π ∈ ∆R ⇒ JLO cocycle τπ for all
π ∈ ∆R .

I The cohomology classes of the cocycles τπ are separated by suitable
projections in A∆R

.

This strategy has been undertaken successfully in Carpi, Hillier, Longo,
Kawahigashi, Xu: arXiv:1207.2398 in the case of (the Bose part of)
N = 2 super-Virasoro nets. In particular, for these models, the algebras
A∆R

have nontrivial K0 group.



Strategy 2.

I Consider a fixed minimally reducible Ramond type representations π
and consider a family ∆ of DHR endomorphisms of C∗(A), possibly
satisfying suitable “differentiability” conditions .

I A∆ ≡ {A ∈W ∗(A) : [Qπ, π ◦ ρ(A)] bounded on dom(Qπ) ∀ρ ∈ ∆}
I Natural locally convex topology on A∆.

I (A∆, (π ◦ ρ,Hπ),Qπ)) θ-summable even spectral triple with the
right continuity properties for all ρ ∈ ∆ ⇒ JLO cocycle τρ for all
ρ ∈ ∆.

I The cohomology classes of the cocycles τρ are separated by suitable
projections in A∆.

This strategy has been undertaken successfully in Carpi, Hillier, Longo:
arXiv:1304.4062 in the case of (the Bose part of) N = 1 super-Virasoro
nets and supersymmetric loop group models. In particular, for these
models, the algebras A∆ have nontrivial K0 group.



THANK YOU VERY MUCH!


