	Preliminaries	Main results	Cocycle conjugacy	Obstructions	Conjectur

Group Actions on Kirchberg Algebras

Masaki Izumi

Graduate School of Science, Kyoto University

July 9, 2013 at Rome

Joint work with Hiroki Matui

"Very outer" actions of a discrete amenable group G on an AFD factor M are completely classified by local invariants.

Theorem (Connes, Jones, Ocneanu, Takesaki, Sutherland, Kawahigashi, Katayama)

Centrally free actions α of G on M are completely classified by $\mod{(\alpha_g)},$ where

$$mod : Aut(M) \to Aut(F^M)$$

is the Connes-Takesaki module.

The classification of non centrally free actions requires global (cohomological) invariants, called the characteristic invariant.

Introduction		Main results	Cocycle conjugacy	Obstructions	Conjecture
Nakamura	a's theorem	1			

Outer $\mathbb{Z}\text{-}\mathsf{actions}$ on a Kirchberg algebras are completely classified by local invariants.

Theorem (Nakamura 1999)

Let A be Kirchberg algebra, and let $\alpha, \beta \in Aut(A)$. If α^n and β^n are outer for all $n \in \mathbb{Z} \setminus \{0\}$, the following conditions are equivalent:

(1) $KK(\alpha) = KK(\beta)$, (2) $\exists \gamma \in Aut(A), \exists u \in U(A) \text{ s.t. } KK(\gamma) = KK(id)$, and

$$\operatorname{Ad} u \circ \alpha = \gamma \circ \beta \circ \gamma^{-1}.$$

Goal	

<u>Goal</u> To classify "very outer" actions of "nice" discrete amenable groups G on classifiable nuclear C^* -algebras A.

Question Are local invariants sufficient for general G?

Answer No!

<u>Reason</u> The interplay between G (or its classifying space BG) and the topology of Aut(A) (or $Aut(A \otimes \mathbb{K})$) matters.

For ${\cal G}$ with low cohomological dimension, there is a good chance to classify ${\cal G}$ actions.

Kirchberg algebras

Definition

- A unital C^* -algebra A is purely infinite if $\forall a \in A_+ \setminus \{0\}$, $\exists x \in A$ such that $1 = x^*ax$.
- A Kirchberg algebra is a purely infinite, simple, nuclear, separable C^* -algebra.

Theorem (Kirchberg, Phillips)

Kirchberg algebras are completely classified by KK-theory. Kirchberg algebras A and B satisfying UCT are isomorphic iff

 $(K_0(A), [1_A], K_1(A)) \cong (K_1(B), [1_B], K_1(B)).$

Let A and B be Kirchberg algebras, and $\rho_1, \rho_2 \in \text{Hom}(A, B)$. $KK(\rho_1) = KK(\rho_2) \Leftrightarrow \rho_1, \rho_2$ are asymptotically unitarily equivalent, i.e. there exists a continuous path $\{u(t)\}_{t>0}$ in U(B) s.t.

$$\lim_{t \to \infty} \|\operatorname{Ad} u(t) \circ \rho_2(x) - \rho_1(x)\| = 0, \ \forall x \in A.$$

	Preliminaries	Cocycle conjugacy	Obstructions	Conjecture
Cuntz a	lgebras			

Example

Cuntz algebra \mathcal{O}_n is the universal C^* -algebra generated by isometries S_1, S_2, \cdots, S_n satisfying $S_i^* S_j = \delta_{ij} 1$, and $\sum_{i=1}^n S_i S_i^* = 1$ if $n < \infty$. \mathcal{O}_n is a Kirchberg algebra.

$$(K_0(\mathcal{O}_n), [1_{\mathcal{O}_n}], K_1(\mathcal{O}_n)) \cong (\mathbb{Z}/(n-1)\mathbb{Z}, 1, \{0\}) \text{ if } n < \infty, \\ (K_0(\mathcal{O}_\infty), [1_{\mathcal{O}_\infty}], K_1(\mathcal{O}_\infty)) \cong (\mathbb{Z}, 1, \{0\}).$$

 $\begin{array}{l} \mathcal{O}_2 \overset{KK}{\sim} \{0\}, \\ A \otimes \mathcal{O}_2 \cong \mathcal{O}_2 \text{ for any Kirchberg algebra } A. \end{array}$

 $\begin{array}{l} \mathcal{O}_{\infty} \stackrel{KK}{\sim} \mathbb{C}, \\ A \otimes \mathcal{O}_{\infty} \cong A \text{ for any Kirchberg algebra } A. \end{array}$

Equivalence relations

Definition

Let α, β be actions of a discrete group G on a C^* -algebra A.

- A map $u: G \to U(A)$ is an α -cocycle if $u_{gh} = u_g \alpha_g(u_h)$. Ad $u_g \circ \alpha_g$ is a *G*-action too, called a cocycle perturbation of α .
- α and β are cocycle conjugate if there exist an α -cocycle u and $\gamma \in \operatorname{Aut}(A)$ satisfying

$$\operatorname{Ad} u_g \circ \alpha_g = \gamma \circ \beta_g \circ \gamma^{-1}.$$

• If moreover γ can be chosen to satisfy $KK(\gamma) = KK(id)$, we say that α are β are KK-trivially cocycle conjugate.

"Classification" always means up to KK-trivial cocycle conjugacy.

 $KK(\alpha_g)$ is an invariant for a KK-trivial cocycle conjugacy class.

Introduction	Preliminaries	Main results	Cocycle conjugacy	Obstructions	Conjecture
$Poly extsf{-}\mathbb{Z}$	groups				

Definition

A discrete group G is poly- \mathbbm{Z} if there exists normal series

$$\{e\} = G_0 \lhd G_1 \lhd \cdots \lhd G_n = G,$$

such that $G_{i+1}/G_i \cong \mathbb{Z}$. The number h(G) = n is said to be the Hirsch length of G.

Every finitely generated torsion free nilpotent group is poly- \mathbb{Z} . Every cocompact lattice of a simply connected solvable Lie group is poly- \mathbb{Z} .

Example

$$\begin{array}{l} \mathbb{Z}^n,\\ < a,b| \ aba^{-1}b = 1 >= \pi_1(\text{Klein bottle}),\\ \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}; \ a,b,c \in \mathbb{Z} \right\} : \text{Discrete Heisenberg group,} \end{array}$$

Introduction	Preliminaries	Main results	Cocycle conjugacy	Obstructions	Conjecture
Uniquen	iess				

Theorem (I.-Matui)

Let G be a poly- \mathbb{Z} group. Let A be either \mathcal{O}_2 , \mathcal{O}_∞ , or $\mathcal{O}_\infty \otimes B$ with UHF algebra B satisfying $B \otimes B \cong B$. Then there exists a unique KK-trivial cocycle conjugacy class of outer G-actions on A.

A is called strongly self-absorbing. $\pi_n(\operatorname{Aut}(A)) = \{0\}$ for all $n \ge 0$ (Dadarlat 2007).

Fix an outer action μ^G of G on \mathcal{O}_{∞} .

Theorem (I.-Matui)

For any outer action α of a poly- \mathbb{Z} group G on a Kirchberg algebra A, α is cocycle conjugate to $\alpha \otimes \mu^G$ on $A \otimes \mathcal{O}_{\infty}$.

Classification	

In what follows A is always a Kirchberg algebra.

Theorem (I.-Matui)

Outer actions of a poly- \mathbb{Z} group G with $h(G) \leq 3$ on a A is classifiable. The number of KK-trivially cocycle conjugacy classes is bounded by

 $\# \operatorname{Hom}(G, KK(A, A)_u^{-1}) \\ \times \# H^2(G, \pi_1(\operatorname{Aut}(A \otimes \mathbb{K})_0)) \times \# H^3(G, \pi_2(\operatorname{Aut}(A \otimes \mathbb{K})_0)),$

where

 $KK(A, A)_u^{-1} = \{ x \in KK(A, A)^{-1}; \ [1_A] \hat{\otimes} x = [1_A] \in K_0(A) \}.$

 $\pi_n(\operatorname{Aut}(A \otimes \mathbb{K})_0) \cong KK^n(A, A)$ (Dadarlat 2007).

		Main results	Cocycle conjugacy	Obstructions	Conjecture
Classificati	on (con	tinued)			

Theorem (I. Matui)

Let G be a poly-Z group with $h(G) \leq 3$, and $2 \leq n < \infty$. There exist exactly $\#H^2(G, \mathbb{Z}/(n-1)\mathbb{Z})$ outer actions of G on \mathcal{O}_n .

	Outer actions on \mathcal{O}_n
Z	1
\mathbb{Z}^2	n-1
\mathbb{Z}^3	$(n-1)^3$
π_1 (Klein bottle)	1 for even n and 2 for odd n
Discrete Heisenberg group	$(n-1)^2$

There exist exactly $\#H^2(G, \mathbb{Z}/(n-1)\mathbb{Z}) \times \#H^3(G, \mathbb{Z}/(n-1)\mathbb{Z})$ outer cocycle actions of G on \mathcal{O}_n .

Lemma

Let α, β be actions of a discrete group G on A. If α and β are KK-trivially cocycle conjugate, then β is continuously approximated by cocycle perturbations of α .

Proof.

 $\exists \ \alpha \text{-cocycle} \ \{u_g\}_{g \in G}, \ \exists \ \text{continuous family} \ \{v(t)\}_{t \geq 0} \ \text{in} \ U(A) \ \text{s.t.}$

$$\operatorname{Ad} u_g \circ \alpha_g = \gamma \circ \beta_g \circ \gamma^{-1}, \quad \gamma = \lim_{t \to \infty} \operatorname{Ad} v(t).$$

Set $a_g(t) = v(t)^* u_g \alpha_g(v(t))$. $\{a_g(t)\}_{g \in G}$ is an α -cocycle for each t and

$$\lim_{t \to \infty} \operatorname{Ad} a_g(t) \circ \alpha_g = \beta_g.$$

		Cocycle conjugacy	Obstructions	Conjecture
Sufficien	су			

Theorem (I.-Matui)

Let α, β be outer actions of a poly- \mathbb{Z} group G on A. If there exist continuous families of unitaries $u_q(t)$ in A satisfying

 $\lim_{t\to\infty} \operatorname{Ad} u_g(t) \circ \alpha_g = \beta_g,$

$$\lim_{t \to \infty} \|u_g(t)\alpha_g(u_h(t)) - u_{gh}(t)\| = 0,$$

then α and β are KK-trivially cocycle conjugate.

 $A^{\flat} = C_b([0,\infty), A) / C_0([0,\infty), A).$

If $\exists \alpha$ -cocycle $\{u_g\}_{g \in G}$ in $U(A^{\flat})$ satisfying $\operatorname{Ad} u_g \circ \alpha_g(x) = \beta_g(x)$ for any $x \in A$, then α and β are KK-trivially cocycle conjugate.
 Introduction
 Preliminaries
 Main results
 Cocycle conjugacy
 Obstructions
 Conjecture

 Difficulty in finite group actions

 </td

Let $\alpha \in \operatorname{Aut}(\mathcal{O}_2)$ be the flip automorphism $\alpha(S_1) = S_2$, $\alpha(S_2) = S_1$. Then $\mathcal{O}_2 \rtimes_{\alpha} \mathbb{Z}_2 \cong \mathcal{O}_2$.

Theorem (I. 2004)

For any uniquely 2-divisible countable abelian groups M_0, M_1 , \exists an outer \mathbb{Z}_2 -action β on the Cuntz algebra \mathcal{O}_2 s.t.

$$K_*(\mathcal{O}_2 \rtimes_\beta \mathbb{Z}_2) = M_*, \quad * = 0, 1.$$

Moreover, \exists a continuous family $\{u(t)\}_{t\geq 0}$ in $U(\mathcal{O}_2)$ s.t.

$$u(t)\alpha(u(t)) = 1,$$

$$\beta(x) = \lim_{t \to \infty} \operatorname{Ad} u(t) \circ \alpha(x), \quad \forall x \in \mathcal{O}_2.$$

			Cocycle conjugacy	Obstructions	Conjecture
Primary	obstructio	on			

Let
$$A^{\flat} = C_b([0,\infty), A)/C_0([0,\infty), A)$$
, $A_{\flat} = A^{\flat} \cap A'$.

Let α, β be outer actions of a discrete group G on A satisfying $KK(\alpha_g) = KK(\beta_g)$. Choose $u_g \in U(A^{\flat})$ satisfying $\operatorname{Ad} u_g \circ \alpha_g(x) = \beta_g(x)$ for any $x \in A$. Set $w_{g,h} = u_g \alpha_g(u_h) u_{gh}^* \in U(A_{\flat})$. Set $\sigma_g = \operatorname{Ad} u_g \circ \alpha_g|_{A_{\flat}}$. (σ, w) is a cocycle action of G on A_{\flat} .

 (σ, w) is equivalent to a genuine action $\Leftrightarrow \{u_g\}_{g \in G}$ can be chosen to from an α -cocycle.

 $\mathfrak{o}^2(\alpha,\beta) = [(K_1(w_{g,h}))_{g,h\in G}] \in H^2(G,K_1(A_{\flat}))$ does not depend on the choice of $\{u_g\}_{g\in G}$.

We call $\mathfrak{o}^2(\alpha,\beta)$ primary obstruction, which is an obstruction for α and β to be *KK*-trivially cocycle conjugate.

			Cocycle conjugacy	Obstructions	Conjecture
Higher c	bstruction	1			

When $\mathfrak{o}^2(\alpha,\beta) = 0$, we can choose $\{u_g\}_{g \in G}$ so that $w_{g,h} \in U(A_{\flat})_0$.

Choose a continuous path $\{\tilde{w}_{g,h}(t)\}_{t\in[0,1]}$ from 1 to $w_{g,h}$ in $U(A_\flat)_0.$ Then

$$K_1(\sigma_g(\tilde{w}_{h,k})\tilde{w}_{g,hk}\tilde{w}_{g,h,k}^*\tilde{w}_{g,h}) \in K_1(SA_{\flat}) = K_0(A_{\flat}).$$

We can define $\mathfrak{o}^3(\alpha, \beta, u) \in H^3(G, K_0(A_{\flat}))$ by the cohomology class of it, which does not depends on the choice of $\tilde{w}_{g,h}(t)$. $\mathfrak{o}^3(\alpha, \beta, u)$ may depend on the choice of $\{u_g\}_{g \in G}$.

Theorem (I.-Matui)

For each finite CW-complex X, there exists an isomorphism from $[X, U(A_{\flat})]_0$ onto $[X, \operatorname{Map}(S^1, \operatorname{Aut}(A \otimes \mathbb{K}))]_0$, which is natural in X. In particular, $K_n(A_{\flat}) \cong \pi_n(\operatorname{Aut}(A \otimes \mathbb{K})_0)$.

Recall $\pi_n(\operatorname{Aut}(A \otimes \mathbb{K})_0) \cong KK^n(A, A).$

Cocycle conjugacy

Obstructions

Conjecture

Classification by obstructions

Theorem (I.-Matui)

Let α, β be outer actions of a poly- \mathbb{Z} group on A. Assume $KK(\alpha_g) = KK(\beta_g)$ for any $g \in G$.

(1) Assume h(G) = 2. α and β are KK-trivially cocycle conjugate if and only if $\mathfrak{o}^2(\alpha, \beta) = 0$. (2) Assume h(G) = 3. α and β are KK-trivially cocycle conjugate if and only if $\mathfrak{o}^2(\alpha, \beta) = 0$ and $\mathfrak{o}^3(\alpha, \beta, u) = 0$ for some choice of $\{u_g\}_{g \in G}$.

Introduction	Preliminaries	Main results	Cocycle conjugacy	Obstructions	Conjecture
Conjecti	ure				

Let BG be the classifying space of a poly- \mathbb{Z} group G, and let EG be its universal covering space, e.g. $G = \mathbb{Z}^N$, $EG = \mathbb{R}^N$, $BG = \mathbb{T}^N$.

For a G-action α on A, we denote by \mathcal{P}_{α} the quotient space of $EG \times \operatorname{Aut}(A)$ by the equivalence relation $(x \cdot g, \gamma) \sim (x, \alpha_g \circ \gamma)$. \mathcal{P}_{α} is a principal $\operatorname{Aut}(A)$ -bundle over BG.

We define \mathcal{P}^s_{α} in the same way by replacing α_g by $\alpha_g \otimes \operatorname{Ad} \rho_g$, and $\operatorname{Aut}(A)$ with the group generated by

 $\{\gamma \otimes \operatorname{id}_{\mathbb{K}} \in \operatorname{Aut}(A \otimes \mathbb{K}); \ \gamma \in \operatorname{Aut}(A)\} \cup \operatorname{Inn}(A \otimes \mathbb{K}).$

Conjecture

For two outer G-actions α, β on A, TFAE: (1) α and β are KK-trivially cocycle conjugate. (2) \mathcal{P}^s_{α} and \mathcal{P}^s_{β} are isomorphic by a base point preserving map.
 Introduction
 Preliminaries
 Main results
 Cocycle conjugacy
 Obstructions
 Conjecture

 Conjecture (continued)
 Conjecture
 Conjecture
 Conjecture
 Conjecture
 Conjecture

The primary (resp. higher) obstruction for the existence of a base point preserving isomorphism between \mathcal{P}^s_{α} and \mathcal{P}^s_{β} can be identified with $\mathfrak{o}^2(\alpha,\beta)$ (resp. $\mathfrak{o}^3(\alpha,\beta,u)$).

Corollary

Conjecture is true for $h(G) \leq 3$.

When A is a strongly self-absorbing, e.g. \mathcal{O}_2 , \mathcal{O}_∞ , we have $\pi_n(\operatorname{Aut}(A)) = \{0\}$ for all n, and so \mathcal{P}_α is a trivial bundle.

Corollary

Conjecture is true for strongly self-absorbing A.