
Algebraic theory of integrable PDE

with Alberto De Sole and collaborators
(Wakimoto, Barakat, Carpentier, Valeri, Turhan)

1. Compatible evolution equations and integrability

2. Variational differential forms

3. Local and non-local Poisson structure

4. Some non-commutative algebra: principal ideal rings

5. Local and non-local Poisson vertex algebras (PVA)

6. Lenard–Magri scheme of integrability of bi-Hamiltonian
equations.

7. Hamiltonian reduction of PVA and generalized
Drinfeld–Sokolov hierarchies

8. Dirac reduction of PVA
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Evolution equation is a PDE of the form

(1)
du

dt
= P (u, u′, . . . , u(n)) ,

where u =




u1
...
u!



 , ui = ui(t, x) is a function in one independent

variable x, and t (time) is a parameter;

P =




P1
...

P!



 ∈ V !, V algebra of “differential functions”.

This equation is called compatible with another evolution equa-
tion

du

dt1
= Q(u, u′, . . . , u(m))

if “the corresponding flows commute”:

d

dt

d

dt1
u =

d

dt1

d

dt
u.
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Compute the LHS using the chain rule:

d

dt

d

dt1
Q(u, u′, . . . , u(m)) =

∑

i; n∈Z+

∂Q

∂u(n)
i

∂nPi = XPQ,

where

∂ =
d

dx
is the total derivative, and

XP =
∑

i; n∈Z+

(∂nPi)
∂

∂u(n)
i

is the evolutionary vector field with characteristic P ∈ V !.
Hence, [

d

dt
,

d

dt1

]
u = [XP, XQ] = X[P,Q],

where

(2) [P, Q] = XPQ − XQP

is a Lie algebra bracket on V !.
Thus, equations dt

du = P , du
dt1

= Q are compatible iff the corre-
sponding evolutionary vector fields commute.
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Evolution equation is called integrable if it can be included in
an infinite hierarchy of linearly independent compatible evolution
equations:

du

dtn
= Pn, [Pm, Pn] = 0, m, n ∈ Z+,

called an integrable hierarchy.
Thus, classification of integrable evolution equations = classifi-

cation of infinite-dimensional (maximal) abelian subalgebras L in
the Lie algebra of evolutionary vector fields V ! with the bracket
(2).

Trivial examples of integrable hierarchies:

1. linear: utn = u(n),

since Xu(m)u(n) = u(m+n)

2. dispersionless: utf = f(u)u′,

since Xf(u)u′(g(u)u′) =
(
f dg

du + g df
du

)
u
′2

+ fgu′′.
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Nontrivial examples of integrable hierarchies:

ut = u′′ + uu′ (Burgers)
ut = u′′′ + uu′ (KdV )
ut = u′′′ + u2u′ (mKdV )

ut = u′′′ + u′2 (pKdV )

ut = u′′′ + u′3 (LKdV )

ut = u′′′ −
3u′′′2

2u′︸ ︷︷ ︸
Schwarz KdV

+h(u)
u′ (Krichever–Novikov)

h(u) polynomial of degree at most 4 .

Shabat, Sokolov, Mikhailov,..., Meshkov Theorem. Up to au-
tomorphism of the algebra of differential functions, there are only
nine more integrable equations of the form ut = u′′′+f(u, u′, u′′).
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Folklore Conjecture. Any order ≥ 7 integrable evolution equa-
tion in one function u is contained in the hierarchy of a non-trivial
integrable equation of order ≤ 5. In other words, any maximal
infinite-dimensional subalgebra of V with bracket (2) contains a
non-central element of order ≤ 5.

There are partial classificational results on 2-component equa-
tions, the most famous among them is the non-linear Schrödinger:

{
ut = v′′ + 2v(u2 + v2)
vt = −u′′ − 2u(u2 + v2)

.

I shall now discuss the other part of the problem: how to prove
integrability. But first we have to answer the usually neglected
question:
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What is a differential fuction f ∈ V ?
An algebra of differential functions is a differential algebra V
with the derivation ∂ (total derivative), endowed with commuting
derivations

∂

∂u(n)
i

, i = 1, . . . , ! ; n ∈ Z+,

subject to two axioms:

1 ∂

∂u
(n)
i

f = 0 for all but finite number of i, n.

2

[
∂

∂u
(n)
i

, ∂

]
= ∂

∂u
(n−1)
i

(basic identity).

Axiom 1 is needed, otherwise XPQ is divergent.

Axiom 2 is satisfied for the main example, the algebra of differ-
ential polynomials:

V = F[u(n)
i |i = 1, . . . , ! ; n ∈ Z+]

∂u(n)
i = u(n+1)

i .

Arbitrary V is its extension, for example, for KN we need to in-
vert u′.

Note: ∂−1 cannot be defined if we want both axioms to hold!
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S.-S. Chern. In life both men and women are important. Like-
wise in geometry both vector fields and differential forms are im-
portant.

In our theory vector fields are evolutionary vector fields

XP (P ∈ V !).

They commute with ∂ = Xu′. This tells us how to define varia-
tional differential forms.
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Ordinary differential forms (dual to all vector fields) are

ω =
∑

fn,...,nk
i1,...,ik

du(u1)
i1

∧ · · · ∧ du(nk)
ik

with the usual de Rham differential d:

Ω̃0 = V
d
→ Ω̃1 d

→ Ω̃2 → · · ·

and derivation ∂ : ∂(du(n)
i ) = du(n+1)

i .
Axiom 2. of V (the basic identity) is equivalent to the property

that ∂ commutes with d. Therefore we can define the variational
complex by letting

Ωk = Ω̃k/∂Ω̃k :

V/∂V
d
→ Ω̃1/∂Ω̃1 d

→ Ω̃2/∂Ω̃2 d
→ ...

Here V/∂V is the space (not algebra any more) of local func-
tionals, the universal space where we can perform integration by
parts. Now we can describe the variational complex more ex-
plicitely:
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V/∂V → V ⊕! → skew-adjoint matrix

differential operators on V ! → ...∫
f )→

δ
∫

f

δu
F )→ DF − D∗

F

where
δ

δu
=

(
δ

δuj

)

j

,
δf

δui
=

∑

n∈Z+

(−∂)n
∂f

∂u(n)
i

is the variational derivative;

(DF )ij =
∑

n∈Z+

∂Fi

∂u(n)
j

∂n

is the Frechet derivative.
Note that

(a) δ
δu ◦ ∂ = 0 (⇔ axiom 2) (Euler)

(b) Dδf
δu

is self-adjoint (Helmholtz), is the condition on F ∈ V ⊕!

to be a variational derivative (exact 1-form is closed)
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Theorem. Let

Vm,i = {f ∈ V |
∂

∂u(n)
j

f = 0 , (n, j) > (m, i)}

and suppose that ∂

∂u
(m)
i

Vm,i = Vm,i. Then the variational complex

is exact. One can always embed V in a larger algebra of differential
functions Ṽ s.t. the variational complex becomes exact.

Note that we a have a non-degenerate pairing between the
space of evolutionary vector fields = V ! and the space of varia-
tional 1-forms Ω1 = V ⊕!, induced from the usual pairing of vector
fields with differential 1-forms:

(3) (XP |ωQ) = (P |Q) :=

∫
P · Q ∈ V/∂V .
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An effective way of constructing an integrable equation is to
use Poisson structures. What is a local (or non-local) Poisson
structure on V ?

Physicists define it by the following formula:
(4)
{ui(x), uj(y)} = Hij(u(y), u′(y), . . . , u(n)(y); ∂/∂y)δ(x − y) ,

where
∫

f(y)δ(x − y) = f(x) and H = (Hij) is an ! × ! matrix
differential (or pseudo-differential) operator, whose coefficients are
functions in u, u′, . . . , u(n).

Extending this formula (4) by Leibniz’s rule and bilinearity to
f, g ∈ V , we obtain
(5)

{f(x), g(y)} =
∑

i,j

∑

m,n∈Z+

∂f(x)

∂u(m)
i

∂g(y)

∂u(n)
j

∂m
x ∂n

y {ui(x), uj(y)}.

Integrating (5) by parts in x, we obtain (for g = uj):

(6) {

∫
f, u}H = H

δ

δu

∫
f .

Integrating (5) by parts in x and in y, we obtain:

(7) {

∫
f,

∫
g}H =

∫
δ
∫

g

δu
· H(∂)

δ
∫

f

δu
.
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Definition (a) An !× ! matrix differential operator H is called
a (local) Poisson structure on V if (7) is a Lie algebra bracket
on V/∂V . This happens iff H∗ = −H and [H, H] (Schouten
bracket) = 0.

(b) Given a Poisson structure H on an algebra of differential
functions V and a local functional

∫
h (Hamiltonian), the corre-

sponding Hamiltonian evolution equation is

(8)
du

dt
= {

∫
h, u}H

(the corresponding evolutionary vector field is X
H

δ
∫

h
δu

).

(c) Two local functionals are in involution if their commutator
(7) is zero.

Remark. The map V/∂V → Lie algebra of evolutionary vector
fields V ! given by ∫

f )→ X
H

δ
∫

f
δu

is a Lie algebra homomorphism. In particular, local functionals in
involution correspond to commuting evolutionary vector fields.

Corollary. If
∫

h is contained in an infinite-dimensional abelian
subalgebra of the Lie algebra (V/∂V, { , }H) and dim Ker H <
∞ (i.e. H non-degenerate), then equation (8) is integrable.
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An alternative approach is to apply the Fourier transform
∫

dxeλ(x−y).
to both sides of (5). Denoting {fλg} =

∫
dxeλ(x−y){f(x), f(y)},

we get the Master Formula:

(9) {fλg} =
!∑

i,j=1

∑

m,n∈Z+

∂g

∂u(n)
j

(λ + ∂)nHji(−λ − ∂)m
∂f

∂u(m)
i

.

This λ-bracket satisfies:

(i) (Leibniz rules) {fλgh} = g{fλh}+h{fλg}; {fgλh} =
{fλ+∂g}→h + {fλ+∂h}→g;

(ii) (sesquilinearity) {∂fλg} = −λ{fλg} , {fλ∂g} =
(λ + ∂){fλg}.

Theorem. (a) The bracket (7) is a Lie algebra bracket iff:

(iii) (skewcommutativity) {gλf} = −{f−λ−∂g},

(iv) (Jacobi identity) {fλ{gµh}}−{gµ{fλh}} = {{fλg}λ+µh}.

(b) It suffices to check skewcommutativity of any pair (ui, uj)
and Jacobi identity for any triple (ui, uj, uk).
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Definition. (a) A F[∂]-module R is called a Lie conformal
algebra if {RλR} ⊂ R[λ] and (ii), (iii), (iv) hold.

(b) A unital differential algebra (V, ∂) is called a (local) Poisson
vertex algebra (PVA) if {VλV } ⊂ V [λ] and (i)–(iv) hold.

(c) If the λ-bracket is given by the Master formula, and it is a
PVA, the (skewadjoint) differential operator H = (Hij) is called
a (local) Poisson structure.

Examples. H = ∂ (GFZ structure) {uλu} = λ
H = c∂3+2u∂+u′ (Virasoro–Magri structure) {uλu} = 2uλ+

u′ + cλ3 .
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How to extend these notions to the non-local case (i.e. H(∂) is
a pseudodifferential operator?). In this case we see from (9) that

{VλV } ⊂ V ((λ−1)) .

It is easy to interpret the identities (i)–(iii): expand in positive
powers of ∂ each time when we encounter 1

(λ+∂)n . However, in
order for the Jacobi identity to make sense we must impose ad-
missibility property:

{fλ{gµh}} ⊂ V [[λ−1, µ−1, (λ + µ)−1]][λ, µ] .

Proposition. The λ-bracket (9), given by the Master Formula
is admissible provided that H(∂) is a rational pseudodifferen-
tial operator, i.e. it is contained in the subalgebra of the algebra
of pseudodifferential operators V ((∂−1)), generated by differential
operators and their inverses.
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Then our basic definitions extend to the non-local case: non-
local Lie conformal algebra, non-local PVA, non-local Poisson
structure.

Examples: H = ∂−1

H = u′∂−1 ◦ u′ (Sokolov)
H = ∂−1 · u′∂−1 ◦ u′∂−1 (Dorfman)

H = ∂I2 +

(
v∂−1 ◦ v −v∂−1 ◦ u
−u∂−1 ◦ v u∂−1 ◦ u

)
(Magri: non-local Poisson

structure for NLS)
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A theory of rational pseudodifferential operators.
Let (V, ∂) be a unital differential algebra, assume V is a domain,

K field of fractions. Let K((∂)) be the skewfield of pseudodiffder-
ential operators, K(∂) the sub-skewfield of rational ones (i.e. the
sub-skewfield, generated by K[∂]). Then

Theorem. (a) Any H ∈ Mat n(K(∂)) can be represented as
AB−1, where A, B ∈ Mat nK[∂], B non-degenerate.

(b) There exists a minimal such representation A0B
−1
0 so that

any other is (A0C)(B0C)−1, C non-degenerate.

(c) AB−1 is minimal iff Ker A ∩ Ker B = 0 in any differential
field extention of K.

The best proof. Use the theory of non-commutative principal
ideal rings.
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What is a Hamiltonian equation

(10)
du

dt
= H(∂)

δ

δu

∫
h

when H is a non-local Poisson structure?

Fix a fractional decomposition H = AB−1. We write associa-
tion relation:

V/∂V 1

∫
h

H
↔ P ∈ V !

if P = A(∂)F , δ
δu

∫
h = B(∂)F for some F ∈ K!. Then the

equation (10) is interpreted as

du

dt
= P

(
≈ A(∂)B(∂)−1 δ

δu

∫
h

)
.
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Lenard–Magri scheme for the (non-local) bi-Poisson structure
(H, K) i.e. both H, K are Poisson and also H +K is Poisson (all
above examples are such). A bi-Hamiltonian equation:

du

dt
= H(∂)

δ

δu

∫
h0 = K(∂)

δ

δu

∫
h1

︸ ︷︷ ︸
means

:= P1(11)

∫
h0

H
↔ P1

K
↔

∫
h1 .

Then under certain conditions the Hamiltonian equation (11) is
integrable:
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Theorem. Let H = AB−1, K = CD−1 be skewadjoint. Let
{ξn}N

n=−1, {Pn}N
n=0 be sequences such that

(*) ξn−1
H
↔ Pn

H
↔ ξn , n = 0, . . . , N .

Then

(a) (Pn|ξm) = 0, m ≥ −1, n ≥ 0 (i.e. the
∫

hm are in
involution if ξm =

∫
hm are exact)

(b) Provided that H = AB−1, K = CD−1 is a bi-Poisson
structure, K non-degenerate, and ξ−1, ξ0 closed, we have:
ξn are closed, hence exact in some differential algebra exten-
tion of V , and

[Pm, Pn] ⊂ Ker B∗ ∩ Ker D∗ , m, n ≥ 0 .

(c) If the orthogonality conditions hold:

(span {ξm}
N
m=−1)

⊥ ⊂ Im C

(span {Pn}
N
m=0)

⊥ ⊂ Im B ,

we can extend (*) to infinity.

(d) If also ord Pn → ∞, then each of the equations du
dtn

=
Pn is integrable and has infinitely many linearly independent
integrals of motion in involution.
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Classical Hamiltonian reduction for PVA V .
Let µ : R → V be a Lie conformal algebra homomorphism;

it extends to the PVA homomorphism µ : S(R) → V . Let
I0 ⊂ S(R) be a PVA ideal. Let I = V µ(I0) be the differthential
algebra ideal of V , generated by µ(I0). The classical Hamiltonian
reduction is the differential algebra

W(V, R, I0) = (V/I)µ(R)

with the λ-bracket

{f + Iλg + I} = {fλg} + I [λ].

Examples. Classical W -algebra, associated to (g, nilpotent f),

W(g, f) is obtained by taking

V = S(F[∂]g) with [aλb] = [a, b] + (a|b)λ,

R = F[∂]g>0, [aλb] = [a, b],

I0 ideal of S(R), generated by m − (f |m), where m ∈ g≥1.

Drinfeld–Sokolov, using f = principal nilpotent, constructed
the integrable DS hierarchy. One can construct the generalized
DS hierarchies for any nilpotent f , such that f +s is a semisimple
element of g, where s has maximal (ad h)-eigenvalue, using the
language of PVA.

22



Dirac reduction for PVA.
Let V be a non-local PVA, let θ1, . . . , θm ∈ V (constraints), let

I be the differential ideal of V generated by them. Consider the
rational pseudodifferential operator C(∂) with symbol (Cαβ(λ)) =
({θβλθα)}).

Theorem. Assume that C(∂) is an invertible matrix pseudod-
ifferential operator. Then

(a) {fλg}D := {fλg}−
∑m

α,β=1{θα λ+∂g}→(C−1)αβ(∂+λ){fλθβ}
is again a (non-local) PVA structure on V .

(b) θi are central: {θi λf}D = 0.

(c)V/I with the induced λ-bracket is again a (non-local) PVA.

Corollary. If H = m
n

(
A B
−B∗ D

)
is a (non-local) Poisson structure

in m + n variables, then A + BC−1B∗ is a non-local Poisson
structure in m variables.
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