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Evolution equation is a PDE of the form

du

(1) e Plu,d,. .. ,u™),
uy
where u = 5 , w; = u;(t, z) is a function in one independent
Uy
variable x, and ¢ (time) is a parameter;
P
P = : € V' V algebra of “differential functions”.
By
This equation is called compatible with another evolution equa-
tion g
d—Z = Q(u,u, ... ,u(m))

if “the corresponding flows commute”:

aad _dad
dt dt;  dty dt



Compute the LHS using the chain rule:

— —Q(u, ..., u™) = Z o (9”P XpQ,

dt dt, i: neZ aui
where p
O = —
dx

is the total derivative, and
. 0
Xp= Z (0"F) ()
1; n€Z4 8’&2

is the evolutionary vector field with characteristic P € V*.

Hence,
d d
[dt dtJ u=[Xp, X = Xipq)
where

is a Lie algebra bracket on V.

Thus, equatlons = P, C‘llt“ () are compatible iff the corre-

sponding evolutlonary vector ﬁelds commute.



Evolution equation is called integrable if it can be included in
an infinite hierarchy of linearly independent compatible evolution
equations:

du
dt,,
called an integrable hierarchy.

Thus, classification of integrable evolution equations = classifi-
cation of infinite-dimensional (maximal) abelian subalgebras £ in
the Lie algebra of evolutionary vector fields V* with the bracket

2).

Trivial examples of integrable hierarchies:

=P, [PwP,]=0 mneZ,,

1. linear: u;, = u™,
since X gmu™ = ulm*n

2. dispersionless: u;, = f(u)u,

since Xy (g(u)u’) = <f§—g + g%) u” + fau.



Nontrivial examples of integrable hierarchies:

U = u" + uu (Burgers)
U = u" 4+ ! (KdV)
U = u” 4+ v/ (mKdV)
U = W+ (pKdV)
U = W (LKdV)
3u’”2 hw)
u = u” — +=7 (Krichever—Novikov)

2u/ u

L
Schwarz KdV
h(u) polynomial of degree at most 4.

Shabat, Sokolov, Mikhailov,..., Meshkov Theorem. Up to au-
tomorphism of the algebra of differential functions, there are only
nine more integrable equations of the form w; = v+ f(u, u', u").



Folklore Conjecture. Any order > 7 integrable evolution equa-
tion in one function wu is contained in the hierarchy of a non-trivial
integrable equation of order < 5. In other words, any maximal
infinite-dimensional subalgebra of V' with bracket (2) contains a
non-central element of order < 5.

There are partial classificational results on 2-component equa-
tions, the most famous among them is the non-linear Schrodinger:

u = v+ 20(u? + v?)
vy = —u" —2u(u® +v?)
I shall now discuss the other part of the problem: how to prove

integrability. But first we have to answer the usually neglected
question:



What is a differential fuction f € V7
An algebra of differential functions is a differential algebra V'
with the derivation 0 (total derivative), endowed with commuting
derivations

0
ou’

7

i=1,...,€;n€Z+,

subject to two axioms:

1 ﬁf = ( for all but finite number of 7, n.

(3

o __ 9 . .
2 [—augn) : 8] D (basic identity).

Axiom 1 is needed, otherwise X p(@) is divergent.

Axiom 2 is satisfied for the main example, the algebra of differ-
ential polynomials:

V= F[ugn)ﬁ: L....,0;neZ
oul" =yl

7 1

Arbitrary V is its extension, for example, for KN we need to in-
vert u’.

Note: O~ cannot be defined if we want both axioms to hold!



S.-S. Chern. In life both men and women are important. Like-

wise in geometry both vector fields and differential forms are im-
portant.

In our theory vector fields are evolutionary vector fields
Xp (PeVh.

They commute with 0 = X,,. This tells us how to define wvaria-
tional differential forms.



Ordinary differential forms (dual to all vector fields) are

with the usual de Rham differential d:
v L

and derivation 0 : 8(du§n)) = dugnﬂ).
Axiom 2. of V' (the basic identity) is equivalent to the property
that 0 commutes with d. Therefore we can define the variational

complex by letting o
QF = QF /00" -
V/ov S aloat L 02e0r L .
Here V/OV is the space (not algebra any more) of local func-
tionals, the universal space where we can perform integration by

parts. Now we can describe the variational complex more ex-
plicitely:



V/OV — V' - skew-adjoint matrix
differential operators on V' — ...

[0

ou
FI—)DF—D;

where

5 (6 5 =, o Of
o= () 5= X0

is the variational derivative;

(Dr)ij = Y s o

nely 7

is the Frechet derivative.
Note that
(a) £ 00 =0 (< axiom 2) (Euler)

(b) Dy is self-adjoint (Helmholtz), is the condition on F € V&
ou

to be a variational derivative (exact 1-form is closed)
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Theorem. Let

0
Vini = {f € V|wf =0, (n,j) > (m,z’)}
8uj

and suppose that LVmJ = Vin.i. Then the variational complex

(m)
Ou;
is exact. One can always embed V' in a larger algebra of differential

functions V' s.t. the variational complex becomes exact.

Note that we a have a non-degenerate pairing between the
space of evolutionary vector fields = V¢ and the space of varia-
tional 1-forms Q! = V¢ induced from the usual pairing of vector
fields with differential 1-forms:

3) (Xplw) = (P|Q) = / P.Qev/ov.
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An effective way of constructing an integrable equation is to
use Poisson structures. What is a local (or non-local) Poisson
structure on V7

Physicists define it by the following formula:

(4)
{wil@),ui(y)} = Hyy(u(y), w'(y), ..., u"(y); 0/9y)s(x — y),

where [ f(y)o(x —y) = f(x) and H = (H;;) is an £ x £ matrix
differential (or pseudo-differential) operator, whose coefficients are
functions in w, u’, . .., u,

Extending this formula (4) by Leibniz’s rule and bilinearity to

f,g € V., we obtain

(5>

Integrating (5) by parts in x, we obtain (for g = u;):

©) ([ ram=ns |1

Integrating (5) by parts in & and in y, we obtain:

o fr o= [P0 el
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Definition (a) An £ x ¢ matrix differential operator H is called

a (local) Poisson structure on V' if (7) is a Lie algebra bracket
on V/OV. This happens ifft H* = —H and [H, H] (Schouten
bracket) = 0.

(b) Given a Poisson structure H on an algebra of differential
functions V' and a local functional [ h (Hamiltonian), the corre-
sponding Hamaltonian evolution equation is

(8) %zgfmmg

(the corresponding evolutionary vector field is XH5 In)-
ou

(c) Two local functionals are in inwvolution if their commutator
(7) is zero.

Remark. The map V/OV — Lie algebra of evolutionary vector
fields V! given by

P Ry
is a Lie algebra homomorphism. In particular, local functionals in

involution correspond to commuting evolutionary vector fields.
Corollary. If [ his contained in an infinite-dimensional abelian

subalgebra of the Lie algebra (V/OV,{ , }y) and dim Ker H <

oo (i.e. H non-degenerate), then equation (8) is integrable.

13



An alternative approach is to apply the Fourier transform [ dzeMv=y),

to both sides of (5). Denoting { frg} = [ dxe* ™ {f(z), f(y)},

we get the Master Formula:

0
0 {he =) > o H (- A_a>mau{;).

1,]= 1mn€Z+

This M\-bracket satisfies:

(i) (Leibniz rules) { fagh} = g{fah} +h{fagl;  {forh} =
{frvogt—h+{faroh}—g;

(ii) (sesquilinearity) {0f\g} = —Mfoag}, {109} =
(A +9){frg}-

Theorem. (a) The bracket (7) is a Lie algebra bracket iff:

(iii) (skewcommutativity) {g\f} = —{f-a-09},
(iv) (Jacobiidentity) { fA{guh}}—{gu{/ah}} = {{/rg}rsphr}-

(b) It suffices to check skewcommutativity of any pair (u;, u;)
and Jacobi identity for any triple (u;, u;, uy).
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Definition. (a) A F|0]-module R is called a Lie conformal
algebra if {R\R} C R[A] and (ii), (iii), (iv) hold.

(b) A unital differential algebra (V, 9) is called a (local) Poisson
vertex algebra (PVA) if {V\V'} C V[A] and (i)—(iv) hold.

(c) If the A-bracket is given by the Master formula, and it is a
PVA, the (skewadjoint) differential operator H = (H,;) is called
a (local) Poisson structure.

Ezamples. H = 0 (GFZ structure) {uyu} = A

H = cd®+2ud+u' (Virasoro-Magri structure) {uyu} = 2ul+
T ON
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How to extend these notions to the non-local case (i.e. H(0) is
a pseudodifferential operator?). In this case we see from (9) that

MV cviah).

It is easy to interpret the identities (i)—(iii): expand in positive
powers of 0 each time when we encounter ﬁ However, in
order for the Jacobi identity to make sense we must impose ad-

massibility property:

{A{gh}} C VI 4+ ) I -

Proposition. The A-bracket (9), given by the Master Formula
is admissible provided that H(0) is a rational pseudodifferen-
tial operator, i.e. it is contained in the subalgebra of the algebra
of pseudodifferential operators V((97 1)), generated by differential
operators and their inverses.

16



Then our basic definitions extend to the non-local case: non-
local Lie conformal algebra, non-local PVA, non-local Poisson
structure.

Examples: H = 07!

H =407 o (Sokolov)
H=0"1 4010407 (Dorfman)

v lov —vOlouw

H =0+ ( —ud 0w ud-lou ) (Magri: non-local Poisson

structure for NLS)
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A theory of rational pseudodifferential operators.

Let (V, 0) be a unital differential algebra, assume V' is a domain,
IC field of fractions. Let IC((0)) be the skewfield of pseudodiffder-
ential operators, KC(0) the sub-skewfield of rational ones (i.e. the
sub-skewfield, generated by K[0]). Then

Theorem. (a) Any H € Mat ,(K(0)) can be represented as
AB™! where A, B € Mat ,K[0], B non-degenerate.

(b) There exists a minimal such representation AgBy* so that
any other is (A9C)(ByC)~!, C non-degenerate.

(¢c) AB™! is minimal iff Ker AN Ker B = 0 in any differential
field extention of AC.

The best proof. Use the theory of non-commutative principal
1deal rings.

18



What is a Hamiltonian equation

du )
10 —=H(O)— | h
(10) G-Hos [
when H is a non-local Poisson structure?

Fix a fractional decomposition H = AB~!. We write associa-
tion relation:

V/&Va/thevg

it P = A)F, £ [h = B(O)F for some F' € K. Then the

equation (10) is interpreted as

‘;_7; _p (z A(@)B(@)lé%/h) |

19



Lenard—Magri scheme for the (non-local) bi-Poisson structure
(H,K)i.e. both H, K are Poisson and also H + K is Poisson (all
above examples are such). A bi-Hamiltonian equation:

du ) )
W fl(a)@/ho _ K(@)@/hlj -p

~~
means

/hoﬁplﬁfhl.

Then under certain conditions the Hamiltonian equation (11) is

integrable:

20



Theorem. Let H = AB™!, K = CD™! be skewadjoint. Let
{E N {P, Y, be sequences such that

n=—1»
(*) G pde, n=0,...,N.
Then

(a) (Pul&n) = 0, m > —1,n > 0 (ie. the [ h,, are in
involution if &, = [ h,, are exact)

(b) Provided that H = AB™!, K = CD™! is a bi-Poisson
structure, K non-degenerate, and &_1, & closed, we have:

&, are closed, hence exact in some differential algebra exten-
tion of V', and

[P, P]) C Ker B*NKer D, m,n >0.

(c) If the orthogonality conditions hold:

(Span {gm %:_1>J— ClImC
(span {P,}¥_)* c Im B,

we can extend (*) to infinity.

(d> If also ord P, — oo, then each of the equations % =

P, is integrable and has infinitely many linearly independent
integrals of motion in involution.

21



Classical Hamiltonian reduction for PVA V.

Let n : R — V be a Lie conformal algebra homomorphism;
it extends to the PVA homomorphism p @ S(R) — V. Let
Iy C S(R) be a PVA ideal. Let I = V(1) be the differthential
algebra ideal of V', generated by p(1y). The classical Hamiltonian
reduction is the differential algebra

W(V, R, I,) = (V/I)"B)
with the A-bracket

{f+Lg+1}={fg}+ I\

Framples. Classical W -algebra, associated to (g, nilpotent f),

W(g, f) is obtained by taking

V = S(F[0]g) with [a)b] = [a, b] + (a|b)A,

R = F|0]g-0, [ab] = [a, b],

Iy ideal of S(R), generated by m — (f|m), where m € g-.

Drinfeld-Sokolov, using f = principal nilpotent, constructed
the integrable DS hierarchy. One can construct the generalized
DS hierarchies for any nilpotent f, such that f + s is a semisimple

element of g, where s has maximal (ad h)-eigenvalue, using the
language of PVA.
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Dirac reduction for PVA.

Let V' be a non-local PVA, let 04, ...,0,, € V (constraints), let
I be the differential ideal of V' generated by them. Consider the
rational pseudodifferential operator C'(9) with symbol (Chp(A)) =
({05704)})-

Theorem. Assume that C'(9) is an invertible matrix pseudod-
ifferential operator. Then

() {fag}? = {fag} =220 51 {00 nvo9} - (CTHap(0+A{ 205}

is again a (non-local) PVA structure on V.
(b) 6; are central: {0; \f}P = 0.
(c)V/I with the induced A-bracket is again a (non-local) PVA.

Corollary. If H = nm(_AB*BD) is a (non-local) Poisson structure
in m + n variables, then A + BC~'B* is a non-local Poisson

structure in m variables.
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