Non-local perturbations of linear hyperbolic PDEs and QFT on non-commutative spacetimes

Gandalf Lechner

joint work with Rainer Verch arXiv:1307.1780

UNIVERSITÄT LEIPZIG

Mathematics and Quantum Physics – July 11, 2013 –

The wave equation

Let's consider the wave operator on Minkowski space \mathbb{R}^n ,

$$D = \frac{\partial^2}{\partial x_0^2} - \sum_{k=1}^{n-1} \frac{\partial^2}{\partial x_k^2},$$

and the wave equation

Df = 0.

The wave equation

Let's consider the wave operator on Minkowski space \mathbb{R}^n ,

$$D = \frac{\partial^2}{\partial x_0^2} - \sum_{k=1}^{n-1} \frac{\partial^2}{\partial x_k^2},$$

and the wave equation

$$Df = 0$$
.

> Have Greens functions/fundamental solutions, i.e. linear cont. maps $R^\pm:\mathscr{C}_0^\infty\to\mathscr{C}^\infty$ such that

$$R^{\pm}Df = f = DR^{\pm}f, \qquad f \in \mathscr{C}_0^{\infty}.$$

The wave equation

Let's consider the wave operator on Minkowski space \mathbb{R}^n ,

$$D = \frac{\partial^2}{\partial x_0^2} - \sum_{k=1}^{n-1} \frac{\partial^2}{\partial x_k^2},$$

and the wave equation

$$Df = 0$$
.

> Have Greens functions/fundamental solutions, i.e. linear cont. maps $R^\pm:\mathscr{C}_0^\infty\to\mathscr{C}^\infty$ such that

$$R^{\pm}Df = f = DR^{\pm}f, \qquad f \in \mathscr{C}_0^{\infty}.$$

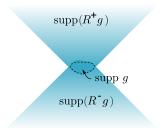
> All solutions (with spacelike comp. support) are of the form

$$R^-f - R^+f, \qquad f \in \mathscr{C}_0^\infty.$$

Gandalf Lechner (Uni Leipzig)

 Solutions spread with the speed of light (= 1),

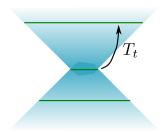
 $\operatorname{supp}(R^{\pm}g) \subset J^{\pm}(\operatorname{supp} g)$



 Solutions spread with the speed of light (= 1),

 $\operatorname{supp}(R^{\pm}g) \subset J^{\pm}(\operatorname{supp} g)$

- Cauchy problem well-posed, unique solutions to all 𝒞₀[∞]-Cauchy data
- Have time evolution operator T_t



All this is true for more general *D*; in particular for

» D normally hyperbolic,

$$D = \frac{\partial^2}{\partial x_0^2} - \sum_{k=1}^s \frac{\partial^2}{\partial x_k^2} + \sum_{\mu=0}^{n-1} U^{\mu}(x) \frac{\partial}{\partial x_{\mu}} + V(x),$$

» Or *D* pre-normally hyperbolic [Mühlhoff 2011]: *D*, *D'* first order diff. op. such that *D'D* is normally hyperbolic (e.g. $D = -i\gamma^{\mu}\partial_{\mu} + V(x)$)

Perturbations

Consider (linear!) "perturbations" of D,

 $D_{\lambda} = D + \lambda \cdot W, \qquad \lambda \in \mathbb{C}.$

Perturbations

Consider (linear!) "perturbations" of D,

$$D_{\lambda} = D + \lambda \cdot W, \qquad \lambda \in \mathbb{C}.$$

- ▶ For example $(Wf)(x) = w(x) \cdot f(x)$ with $w \in C_0^\infty$.
- Can study Cauchy problem or scattering problem (→ "relative Cauchy evolution" [Brunetti, Fredenhagen, Verch 2003])

Perturbations

Consider (linear!) "perturbations" of D,

$$D_{\lambda} = D + \lambda \cdot W, \qquad \lambda \in \mathbb{C}.$$

- For example $(Wf)(x) = w(x) \cdot f(x)$ with $w \in \mathscr{C}_0^{\infty}$.
- Can study Cauchy problem or scattering problem (→ "relative Cauchy evolution" [Brunetti, Fredenhagen, Verch 2003])
- Møller operators

$$\Omega_{\lambda,\pm}: \mathsf{Sol}_{\lambda} \to \mathsf{Sol}_0$$

map "interacting" solution of D_{λ} to "free" solutions (future/past asymptotics)

> Potential scattering operator:

$$S_\lambda := \Omega_{\lambda,+} \Omega_{\lambda,-}^{-1}$$
 .

Quantization

Since *D* is linear, corresponding field theory can be easily quantized (either in CCR or CAR fashion).

> For example for a Dirac operator, get Dirac quantum fields $\psi(f)$,

$$\psi(f)^*\psi(g) + \psi(g)\psi(f)^* = i \langle g, \gamma^0 R f \rangle \cdot 1,$$

CAR algebras $\mathfrak{F}_0, \mathfrak{F}_\lambda$, and

> a scattering automorphism

$$s_{\lambda}:\mathfrak{F}_{0}\to\mathfrak{F}_{0}$$
,

induced by S_{λ} .

Quantization

Since *D* is linear, corresponding field theory can be easily quantized (either in CCR or CAR fashion).

• For example for a Dirac operator, get Dirac quantum fields $\psi(f)$,

$$\psi(f)^*\psi(g) + \psi(g)\psi(f)^* = i\langle g, \gamma^0 Rf \rangle \cdot 1,$$

CAR algebras $\mathfrak{F}_0, \mathfrak{F}_\lambda$, and

> a scattering automorphism

$$s_{\lambda}:\mathfrak{F}_{0}\to\mathfrak{F}_{0},$$

induced by S_{λ} .

» Interesting quantity: Derivation ("Bogoliubov's formula")

$$\left.\frac{ds_{\lambda}(\psi(f))}{d\lambda}\right|_{\lambda=0}=i[X(w),\psi(f)].$$

 $X(w) =: \psi^+ \psi : (w)$ Wick product. (Quantized field density)

- > Do the same as above for perturbation *W* that is non-local in time (as far as possible .. might be hard because no Hamiltonian formulation)
- Example: $(Wf)(x) = \int dy w(x, y)f(y)$

> Do the same as above for perturbation *W* that is non-local in time (as far as possible .. might be hard because no Hamiltonian formulation)

• Example:
$$(Wf)(x) = \int dy w(x, y) f(y)$$

> Motivation for that: Study "noncommutative potential scattering"

$$Wf = w \star f$$
.

> Do the same as above for perturbation *W* that is non-local in time (as far as possible .. might be hard because no Hamiltonian formulation)

• Example:
$$(Wf)(x) = \int dy w(x, y) f(y)$$

> Motivation for that: Study "noncommutative potential scattering"

$$Wf = w \star f$$
.

> Further motivation: QFT on noncommutative Minkowski space $[x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}$. What replaces the "commutative assignment"

$$\mathscr{C}_0^\infty
i f \longmapsto \psi(f) \in \mathfrak{F}$$
 ?

Many different suggestions exist in the literature. $[\rightarrow talks by Doplicher and Connes]$

- > Plan here: Use Bogoliubov's formula to define quantum fields on \mathbb{R}^n_{θ} .
- > Compare to other approaches to QFT on NC spaces

> Do the same as above for perturbation *W* that is non-local in time (as far as possible .. might be hard because no Hamiltonian formulation)

• Example:
$$(Wf)(x) = \int dy w(x, y) f(y)$$

> Motivation for that: Study "noncommutative potential scattering"

$$Wf = w \star f$$
.

> Further motivation: QFT on noncommutative Minkowski space $[x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}$. What replaces the "commutative assignment"

$$\mathscr{C}_0^\infty \ni f \longmapsto \psi(f) \in \mathfrak{F}$$
 ?

Many different suggestions exist in the literature.

 $[\rightarrow$ talks by Doplicher and Connes]

- > Plan here: Use Bogoliubov's formula to define quantum fields on \mathbb{R}^n_{θ} .
- > Compare to other approaches to QFT on NC spaces
- > For commutative time, much of this has been done in [Borris, Verch 2011]

Precise setup for $D_{\lambda} = D + \lambda W$

Consider

$$D_{\lambda} = D + \lambda \cdot W,$$

- → *D* a (pre-)normally hyperbolic operator on $\mathscr{C}^{\infty}(\mathbb{R}^n, \mathbb{C}^N)$,
-) $\lambda \in \mathbb{C}$ a coupling constant,
- $W \in \mathscr{C}_0^\infty$ -kernel operator:

$$(Wf)(x) = \int dy \, w(x, y) f(y)$$

with $w \in \mathscr{C}_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C}^{N \times N}).$

Precise setup for $D_{\lambda} = D + \lambda W$

Consider

$$D_{\lambda} = D + \lambda \cdot W,$$

- > *D* a (pre-)normally hyperbolic operator on $\mathscr{C}^{\infty}(\mathbb{R}^n, \mathbb{C}^N)$,
-) $\lambda \in \mathbb{C}$ a coupling constant,
- W a \mathscr{C}_0^∞ -kernel operator:

$$(Wf)(x) = \int dy \, w(x, y) f(y)$$

with $w \in \mathscr{C}_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C}^{N \times N})$.

Then

- ▶ Compact support: there exists compact $K \subset \mathbb{R}^n$ such that $W \mathscr{C}^\infty \subset \mathscr{C}^\infty_0(K)$, and Wf = 0 for all f with supp $f \cap K = \emptyset$,
- > Smoothing.

Assumptions on W can be relaxed, but this is the easiest case.

Gandalf Lechner (Uni Leipzig)

Non-local PDEs

Coupling *D* and *W*

- The dynamics of $D + \lambda W$ can be dominated by D or W.
- For large λ , hyperbolic character of D can break down.

Coupling *D* and *W*

- The dynamics of $D + \lambda W$ can be dominated by D or W.
- For large λ , hyperbolic character of D can break down.

Example: Compactly supported solutions

Let

$$(Wf)(x) = \int dy (w_1(y), f(y)) \cdot (Dw_2)(x)$$

with $w_1, w_2 \in \mathscr{C}_0^\infty$. Then $f = w_2$ is a solution of D_λ for $\lambda = -\langle w_1, w_2 \rangle^{-1}$:

$$D_{\lambda}w_2 = Dw_2 - \langle w_1, w_2 \rangle^{-1} \langle w_1, w_2 \rangle Dw_2 = 0.$$

- > No unique fundamental solutions exist in this case.
- > Ambiguities for quantization.
- Need to restrict to "small" λ .

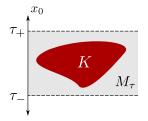
Expanding a solution f_{λ} of D_{λ} in a power series in λ , and solving order by order, suggests

$$f_{\lambda} = \sum_{k=0}^{\infty} (-\lambda R^{\pm} W)^k Rh.$$

Need to control convergence of this series (again, "small λ ").

Fundamental solutions

- For convergence, work first on a time slice M_{\u03c0}.
- > R_{τ}^{\pm} : Advanced/retarded fundamental solutions of *D* on M_{τ} .

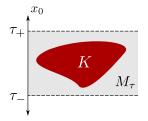


Lemma

 $R^{\pm}_{\tau}W$ and WR^{\pm}_{τ} extend from $\mathscr{C}^{\infty}_{0}(M_{\tau})$ to bounded operators on $\mathscr{L}^{2}(M_{\tau})$, with image in $\mathscr{C}^{\infty}(M_{\tau})$.

Fundamental solutions

- For convergence, work first on a time slice M_{\u03c0}.
- > R_{τ}^{\pm} : Advanced/retarded fundamental solutions of *D* on M_{τ} .



Lemma

 $R_{\tau}^{\pm}W$ and WR_{τ}^{\pm} extend from $\mathscr{C}_{0}^{\infty}(M_{\tau})$ to bounded operators on $\mathscr{L}^{2}(M_{\tau})$, with image in $\mathscr{C}^{\infty}(M_{\tau})$.

$$N_{\tau,\lambda}^{\pm} := \sum_{k=0}^{\infty} (-\lambda R_{\tau}^{\pm} W)^k, \qquad \widetilde{N}_{\tau,\lambda}^{\pm} := \sum_{k=0}^{\infty} (-\lambda W R_{\tau}^{\pm})^k$$

converge in $\mathcal{B}(\mathscr{L}^2(M_{\tau}))$ for sufficiently small $|\lambda|$.

Gandalf Lechner (Uni Leipzig)

Let
$$R_{\tau,\lambda}^{\pm} := N_{\tau,\lambda}^{\pm} R_{\tau}^{\pm} = R_{\tau}^{\pm} \widetilde{N}_{\tau,\lambda}^{\pm}$$
 and $|\lambda|$ small.

Theorem

For any $f \in \mathscr{C}^{\infty}_{0}(M_{ au})$,

•
$$D_{\tau,\lambda}R^{\pm}_{\tau,\lambda}f = f = R^{\pm}_{\tau,\lambda}D_{\tau,\lambda}f.$$

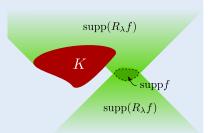
Let
$$R_{\tau,\lambda}^{\pm} := N_{\tau,\lambda}^{\pm} R_{\tau}^{\pm} = R_{\tau}^{\pm} \widetilde{N}_{\tau,\lambda}^{\pm}$$
 and $|\lambda|$ small.

Theorem

For any $f\in \mathscr{C}^\infty_0(M_ au)$,

$$D_{\tau,\lambda} R_{\tau,\lambda}^{\pm} f = f = R_{\tau,\lambda}^{\pm} D_{\tau,\lambda} f.$$

▶ supp $(R_{\tau,\lambda}^{\pm}f) \subset J_{\tau}^{\pm}(\text{supp } f) \cup J_{\tau}^{\pm}(K).$



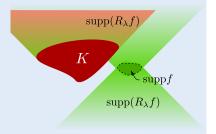
Let
$$R_{\tau,\lambda}^{\pm} := N_{\tau,\lambda}^{\pm} R_{\tau}^{\pm} = R_{\tau}^{\pm} \widetilde{N}_{\tau,\lambda}^{\pm}$$
 and $|\lambda|$ small.

Theorem

For any $f\in \mathscr{C}^\infty_0(M_ au)$,

$$D_{\tau,\lambda}R_{\tau,\lambda}^{\pm}f = f = R_{\tau,\lambda}^{\pm}D_{\tau,\lambda}f.$$

- ▶ supp $(R_{\tau,\lambda}^{\pm}f) \subset J_{\tau}^{\pm}(\operatorname{supp} f) \cup J_{\tau}^{\pm}(K).$
- ▶ supp $(R_{\tau,\lambda}^{\pm}f R_{\tau}^{\pm}f) \subset J_{\tau}^{\pm}(K).$



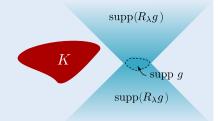
Let
$$R_{\tau,\lambda}^{\pm} := N_{\tau,\lambda}^{\pm} R_{\tau}^{\pm} = R_{\tau}^{\pm} \widetilde{N}_{\tau,\lambda}^{\pm}$$
 and $|\lambda|$ small.

Theorem

For any $f\in \mathscr{C}^\infty_0(M_ au)$,

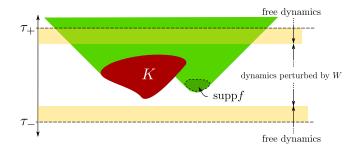
$$D_{\tau,\lambda}R_{\tau,\lambda}^{\pm}f = f = R_{\tau,\lambda}^{\pm}D_{\tau,\lambda}f.$$

- ▶ supp $(R_{\tau,\lambda}^{\pm}f) \subset J_{\tau}^{\pm}(\operatorname{supp} f) \cup J_{\tau}^{\pm}(K).$
- ▶ supp $(R_{\tau,\lambda}^{\pm}f R_{\tau}^{\pm}f) \subset J_{\tau}^{\pm}(K).$
- → If $J^{\pm}_{\tau}(\operatorname{supp} f) \cap K = \emptyset$, then $R^{\pm}_{\tau,\lambda}f = R^{\pm}_{\tau}f$



Global fundamental solutions

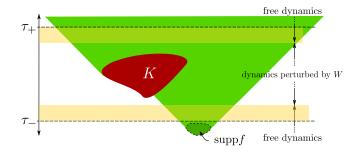
To extend $R^{\pm}_{\tau,\lambda}$ to all of \mathbb{R}^n , "glue" them at the boundary of M_{τ} .



- » An analogous theorem as before holds for the global fundamental solutions R_{λ}^{\pm} .
- » These fundamental solutions are unique.

Global fundamental solutions

To extend $R_{\tau,\lambda}^{\pm}$ to all of \mathbb{R}^n , "glue" them at the boundary of M_{τ} .



- » An analogous theorem as before holds for the global fundamental solutions R_{λ}^{\pm} .
- » These fundamental solutions are unique.

Define the "causal propagator" and solution space

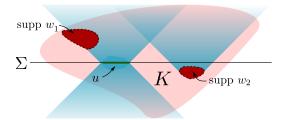
$$egin{aligned} R_\lambda &:= R_\lambda^- - R_\lambda^+ \,, \ \mathsf{Sol}_\lambda &:= \{f_\lambda \in \mathscr{C}^\infty \,:\, D_\lambda f_\lambda = 0, \quad \mathrm{supp}\, f_\lambda \,\, \mathrm{spacelike} \,\, \mathrm{compact}\, \} \end{aligned}$$

» Sol_{λ} carries a well-defined non-degenerate sesquilinear form $\rho_{\lambda} : \text{Sol}_{\lambda} \times \text{Sol}_{\lambda} \to \mathbb{C}, \qquad (R_{\lambda}f, R_{\lambda}g) \mapsto \langle f, R_{\lambda}g \rangle$

Ill-posed Cauchy Problem

- Even for small λ , the Cauchy problem is ill-posed in general.
- Take for example

$$(D_{\lambda}f)(x) = (Df)(x) + \lambda \int dy (w_1(y), f(y)) \cdot w_2(x)$$



> No solution to the Cauchy problem with Cauchy data *u* exists.

- ▶ Each solution $f_{\lambda} \in Sol_{\lambda}$ determines two solutions $f_0^{\pm} \in Sol_0$ (future/past asymptotics).
- > The Møller operators

$$\Omega_{\lambda,\pm}: \operatorname{Sol}_{\lambda} \to \operatorname{Sol}_{0}, \qquad \Omega_{\lambda,\pm}f_{\lambda}:=f_{0}^{\pm}$$

are well-defined linear bijections.

> Define scattering operator

$$S_{\lambda} := \Omega_{\lambda,+}(\Omega_{\lambda,-})^{-1} : \mathsf{Sol}_0 o \mathsf{Sol}_0$$

Theorem

- S_{λ} is a linear bijection preserving the sesquilinear form ρ_0 .
- Explicitly, S_λ is given by

$$\mathcal{S}_{\lambda} = 1 + RW \sum_{k=0}^{\infty} \lambda^{k+1} (-R^+W)^k \,.$$

▶ $\lambda \mapsto S_{\lambda} f_0$ is analytic in neighborhood of $\lambda = 0$. In particular,

$$\frac{d(S_{\lambda}f_0)}{d\lambda}\Big|_{\lambda=0}=RWf_0.$$

The solution space $\mathbf{Sol}_{\lambda}, \rho_{\lambda}$ can be quantized.

▶ For $D = D^*$, $W = W^*$, $\lambda \in \mathbb{R}$, the real solutions

 $(\mathsf{Sol}_{\mathbb{R},\lambda},\rho_{\lambda})$

form a symplectic space \rightarrow CCR quantization.

• For D = Dirac operator and some assumptions on W, the solution space is a pre-Hilbert space \rightarrow CAR quantization.

The solution space $\mathbf{Sol}_{\lambda}, \rho_{\lambda}$ can be quantized.

▶ For $D = D^*$, $W = W^*$, $\lambda \in \mathbb{R}$, the real solutions

 $(\mathsf{Sol}_{\mathbb{R},\lambda},\rho_{\lambda})$

form a symplectic space \rightarrow CCR quantization.

• For D = Dirac operator and some assumptions on W, the solution space is a pre-Hilbert space \rightarrow CAR quantization.

Have C^* -algebras \mathfrak{A}_0 , \mathfrak{A}_λ and isomorphisms

 $lpha_{\pm,\lambda}:\mathfrak{A}_{\lambda}\to\mathfrak{A}_{0}$ induced by Møller operators $s_{\pm,\lambda}:\mathfrak{A}_{0}\to\mathfrak{A}_{0}$ induced by scattering operator

The solution space $\mathbf{Sol}_{\lambda}, \rho_{\lambda}$ can be quantized.

▶ For $D = D^*$, $W = W^*$, $\lambda \in \mathbb{R}$, the real solutions

 $(\mathsf{Sol}_{\mathbb{R},\lambda},\rho_{\lambda})$

form a symplectic space \rightarrow CCR quantization.

 For D = Dirac operator and some assumptions on W, the solution space is a pre-Hilbert space → CAR quantization.

Have C^* -algebras $\mathfrak{A}_0, \mathfrak{A}_\lambda$ and isomorphisms

 $lpha_{\pm,\lambda}:\mathfrak{A}_{\lambda}\to\mathfrak{A}_{0}$ induced by Møller operators $s_{\pm,\lambda}:\mathfrak{A}_{0}\to\mathfrak{A}_{0}$ induced by scattering operator

But: Local structure of \mathfrak{A}_{λ} and \mathfrak{A}_{0} quite different! (Different QFTs)

Take perturbation of Rieffel product form [Rieffel 92]

$$Wf = w \star f, \qquad w \in \mathscr{C}_0^{\infty}(K),$$
$$w \star f = \int_{\mathbb{R}^n} dp \int_{\mathbb{R}^n} dy \, e^{2\pi i (p, y)} \, (w \circ \tau_{\theta p}) \cdot (f \circ \tau_y).$$

- » τ : action of \mathbb{R}^n on \mathbb{R}^n (τ^* smooth, polynomially bounded)
- » θ : real antisymmetric invertible ($n \times n$)-matrix

Take perturbation of Rieffel product form [Rieffel 92]

$$Wf = w \star f, \qquad w \in \mathscr{C}_0^{\infty}(K),$$
$$w \star f = \int_{\mathbb{R}^n} dp \int_{\mathbb{R}^n} dy \, e^{2\pi i (p, y)} \, (w \circ \tau_{\theta p}) \cdot (f \circ \tau_y).$$

- » τ : action of \mathbb{R}^n on \mathbb{R}^n (τ^* smooth, polynomially bounded)
- » θ : real antisymmetric invertible ($n \times n$)-matrix

 $w \star f$ is an oscillatory integral taking values in \mathscr{C}^{∞} (or \mathscr{S} , ...), and \star is a continuous, associative, non-commutative product [GL,Waldmann 2011] [Bieliavsky, Gayral 2011].

Take perturbation of Rieffel product form [Rieffel 92]

$$Wf = w \star f, \qquad w \in \mathscr{C}_0^{\infty}(K),$$
$$w \star f = \int_{\mathbb{R}^n} dp \int_{\mathbb{R}^n} dy \, e^{2\pi i (p, y)} \, (w \circ \tau_{\theta p}) \cdot (f \circ \tau_y).$$

- » τ : action of \mathbb{R}^n on \mathbb{R}^n (τ^* smooth, polynomially bounded)
- » θ : real antisymmetric invertible ($n \times n$)-matrix

 $w \star f$ is an oscillatory integral taking values in \mathscr{C}^{∞} (or \mathscr{S} , ...), and \star is a continuous, associative, non-commutative product [GL,Waldmann 2011] [Bieliavsky, Gayral 2011].

$$Wf = \lim_{\varepsilon \to 0} W_{\varepsilon}f : x \mapsto \int_{\mathbb{R}^n} dp \int_{\mathbb{R}^n} dy \, e^{2\pi i (p,y)} \, \chi(\varepsilon p, \varepsilon y) \, w(\tau_{\theta p}(x)) \cdot f(\tau_y(x))$$

with $\chi \in \mathscr{C}^\infty_{\mathbf{0}}$, $\chi(\mathbf{0})=1$

Perturbations by star product multipliers

> Example 1: $\tau_y(x) = x - y$. Then $\star =$ Moyal product. (have spectral triple structure in this case [Gayral, Gracia-Bondia, lochum, Schucker, Varilly 2003])

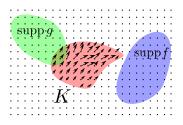
Perturbations by star product multipliers

- > Example 1: $\tau_y(x) = x y$. Then $\star =$ Moyal product.
- Example 2: \(\tau\) such that \(\tau_y(K)) ⊂ K\) for all y. "locally noncommutative star product" [GL, Waldmann 2011]



Perturbations by star product multipliers

- Example 1: $\tau_y(x) = x y$. Then $\star =$ Moyal product.
- ➤ Example 2: \(\tau\) such that \(\tau_y(K)) \) K for all y. "locally noncommutative star product" [GL, Waldmann 2011]



Proposition

- ▶ For $\varepsilon > 0$, both $W_{\varepsilon}^{(1)}$ and $W_{\varepsilon}^{(2)}$ have \mathscr{C}_{0}^{∞} -kernels.
- > The kernel of $W^{(1)}$ is smooth, but not compactly supported.
- The kernel of $W^{(2)}$ is compactly supported, but not smooth.

Non-local PDEs

Bogoliubov's formula for star product multipliers

 For ε > 0, have scattering operators S_{ε,λ} and corresponding automorphisms s_{ε,λ}.

Bogoliubov's formula for star product multipliers

- For ε > 0, have scattering operators S_{ε,λ} and corresponding automorphisms s_{ε,λ}.
- » Still have the derivation

$$\lim_{\varepsilon \to 0} \left. \frac{ds_{\varepsilon,\lambda}}{d\lambda} \right|_{\lambda=0}$$

on $\mathfrak{A}_0.$ Find (for $D=-i\gamma^\mu\partial_\mu$ and Moyal product)

$$\lim_{\varepsilon \to 0} \left. \frac{ds_{\varepsilon,\lambda}\psi(f)}{d\lambda} \right|_{\lambda=0} = i[:\psi^+\psi:(w),\psi(f)]$$

with commutator built with Rieffel product.

 Structure of many approaches to NC QFT reemerges from Bogoliubov's formula.

- Structure of many approaches to NC QFT reemerges from Bogoliubov's formula.
- > Also expect formulas of the type

$$\lim_{\varepsilon \to 0} \left. \frac{ds_{\varepsilon,\lambda}\psi(f)}{d\lambda} \right|_{\lambda=0} = i[X(w),\psi(f)]$$

with normal commutator, but deformed field operators X(w).

 Seems to be connected to "warped convolutions" [Grosse, GL 2007], [Buchholz, Summers 2008], [Buchholz, GL, Summers 2011]

- Structure of many approaches to NC QFT reemerges from Bogoliubov's formula.
- > Also expect formulas of the type

$$\lim_{\varepsilon \to 0} \left. \frac{ds_{\varepsilon,\lambda}\psi(f)}{d\lambda} \right|_{\lambda=0} = i[X(w),\psi(f)]$$

with normal commutator, but deformed field operators X(w).

- Seems to be connected to "warped convolutions" [Grosse, GL 2007], [Buchholz, Summers 2008], [Buchholz, GL, Summers 2011]
- Also applicable to more general noncommutative structures, such as locally noncommutative products. Remains to be worked out.