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Introduction

Quantum groups originate in the theory of

Hopf algebras, which in turn has its roots in

1) algebraic topology (Hopf, ’40, Borel ’50),

2) algebraic groups (Dieudonné, Cartier, ’50)

3) duality for locally compact groups

(G.I. Kac ’60, Takesaki ’70)

•The first example, due to Hopf, was the

cohomology ring H of a Lie group (or

more general manifolds with a non-associative

product operation),

G×G→ G

inducing the coproduct

∆ : H → H ⊗H.
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The term Hopf algebra was conied by

Borel (’53), as an abstraction of H. The

original axioms assumed H to be graded,

graded–commutative... Structure theorems

were obtained.

Cartier [’55] removed many of the original

restrictions. His definition in modern terms is

quite close to the notion of a cocommutative

filtered Hopf algebra

Σ∆ = ∆, Σh⊗ h′ = h′ ⊗ h
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Main known examples of this early period were

• the cocommutative universal enveloping
algebra of a classical Lie group,

∆ : U(g)→ U(g)⊗ U(g)

x ∈ g 7→ x⊗ 1 + 1⊗ x

• the commutative algebra of representative
functions on a compact Lie group G,

∆ : f(g) ∈ R(G)→ f(gh) ∈ R(G)⊗ R(G).

• the Hopf-von Neumann algebras L∞(G),
L(G) where G is a locally compact group.

• Until the mid 80s, few examples were
known which were not either commutative or
cocommutative. These were discovered with
the advent of quantum groups, by Drinfeld and
Jimbo as deformations of the classical groups,

Uq(g).
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• Woronowicz (1987) initiated an operator
algebraic approach, motivated by Connes
noncommutative geometry, and gave an
abstract definition of compact matrix quantum
group, later generalized to compact quantum
group.

A CMQG is an abstract Hopf C∗–algebra
generated by the coefficients of a defining
representation

G = (AG,∆, u), u ∈Mn(AG)

Examples of CMQG are:

• compact Lie groups,

AG = C(G)

all the commutative examples

• SUq(d), Gq (duals of Uq(g), q > 0)
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• finitely generated discrete groups

AG = C∗(Γ),

‘all’ the cocommutative examples.

Irreducible reps are 1-dimensional, Ĝ = Γ,

analogue of abelian groups

• Ao(F ), Au(F )

free analogue of orthogonal and unitary

groups, Wang, Van Daele

More important examples exist which I have

not mentioned.

Woronowicz proved

• Haar measure,

• Peter-Weyl theory

• dense Hopf ∗–subalgebra of ‘representative

functions’
5



• CQG are approximated by CMQG

• Tannaka-Krein duality: A CQG is roughly the

same as a tensor C∗–category together with an

embedding

H : C→ Hilb.

The correspondence is given by

C = Rep(G).

Main new constructions

• Free products: G ∗G′ (Wang)

• Unlike classical compact Lie groups,

classification of all CMQG is intractable.

• An active field is classification of CMQG

with representation ring isomorphic to that of

a given Lie group. Or of quantum groups with

isomorphic representation categories.
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For example, this is solved for SU(2):

(Banica ’97)

R(Ao(F )) = R(SU(2))

Rep(Ao(F )) = Rep(SUq(2)), suitable F, q,

But in general it is a difficult problem. CMQG

are very many, may be highly noncommutative.

• We are interested in studying the general

structure. To what extent can CMQG be

considered as generalizations of Lie groups?

If no restriction on the class is made, analogy

with Lie groups is rather weak. All f.g. groups

discrete are included!

Although CQG do not fit precisely the needs

of algebraic low dim QFT (Szlachanyi’s WHA

would be more appropriate), original interest

in this project was in those with commutative

fusion rules.
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The problem involves a unification of the

theory of compact Lie groups with certain

aspects of geometric group theory. For this

reason, it turns out useful to describe CQG

as discrete mathematical objects, passing to

the dual. Namely, as tensor C∗–categories.

For compact Lie groups, connectedness is

a basic property. Not only this, but local

connectedness enters, in a crucial way,

together with finite dimensionality, (we do not

consider either of them, here) to characterize

Lie groups among the locally compact ones,

by the solution to Hilbert fifth problem of

Gleason, Montgomery and Zippin (50s).
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We aim to

• Introduce the notion of identity component

G0 of a compact quantum group which

-extends the classical notion for compact

groups and

-reduces to connectedness in the sense of

Shuzhou Wang if G = G0.

• consider the noncommutative analogue of

the following facts for compact Lie groups:

G0 is a normal subgroup.

G/G0 is a finite group.
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Normal quantum subgroups

Subgroups are described by epimorphisms

of Hopf C∗–algebras, the ‘restriction map’

(Podles)

AG � AK

Consider the right translation of G by K,

ρ : AG → AG ⊗AK,

as well as the left translation,

λ : AG → AK ⊗AG

We may thus consider the analogue of the right

and left K–invariant functions,

AG/K := {a ∈ AG : ρ(a) = a⊗ 1},

AK\G := {a ∈ AG : λ(a) = 1⊗ a},
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and also the analogue of the bi–K–invariant

functions:

AK\G/K := AK\G ∩AG/K.

AG/K and AK\G are globally G–invariant,

∆(AK\G) ⊂ AK\G⊗AG, ∆(AG/K) ⊂ AG⊗AG/K.

It follows that

∆(AK\G/K) ⊂ AK\G ⊗AG/K.

Definition (Wang) A subgroup N of G is

normal if it satisfies the following equivalent

properties,

a) AN\G = AG/N ,

b) ∆(AG/N) ⊂ AG/N ⊗AG/N .

c) For any v ∈ Ĝ such that v �N> ι, then

v �N= dim(v)ι
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Equivalence follows from the fact that AN\G
is generated by coefficients vψ,φ with ψ N–

invariant and φ arbitrary, while for AG/N we

need ψ arbitrary and φ N–invariant.

Hence if N is normal, AG/N becomes a

compact quantum group with the restriction

of the coproduct of G.

By a), this notion reduces to the classical

notion of normality.

The definition does not mention the adjoint

action, but it is equivalent (Wang).

Example If G = C∗(Γ), any quantum subgroup

K of G is normal,

K = C∗(Γ/Λ), G/K = C∗(Λ),

with Λ / Γ.
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Connected compact quantum groups

Definition (Wang, 2002) A compact quantum

group G is connected if AG admits no

non trivial finite dimensional unital Hopf ∗–
subalgebra.

In the classical case this definition says that

the only finite group Γ for which there is a

continuous epimorphism

G→ Γ

is the trivial group. This is obviously weaker

than connectedness, but it is in fact equivalent

since if G is disconnected, we have

G→ G/G0

and G/G0 is totally disconnected, hence it has

non trivial finite quotients.
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Definition A representation u of a cqg G

will be called a torsion representation if the

subhypergroup

< u, u >⊂ Ĝ

is finite.

Proposition G is connected if and only if

it admits no non trivial (irreducible) torsion

representations.

In particular, quantum groups with fusion

rules identical (or quasiequivalent) to those of

connected compact groups are connected.

Examples

Most known examples are connected:

• If G is a classical compact Lie group, Gq is

connected.
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• products of connected cqg are connected.

• quotient qg, i.e. Hopf C∗–subalgebras,

AL ↪→ AG

of connected qg are connected.

• If N / G and G/N are connected then G is

connected

• Au(F ) and Ao(F ) are connected.

• If G = C∗(Γ), with Γ a discrete group, the

irreducibles of G are the elements of Γ, hence

G is connected if and only if Γ is torsion-free.
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• Uq(su(2)), 0 < q < 1,

KEK−1 = qE, KFK−1 = q−1F,

[E,F ] =
K2 −K−2

q − q−1
,

E∗ = F, K∗ = K.

There are four 1–dimensional representations,

εω : E → 0, F → 0, K → ω ∈ Z4,

Only two are ∗–representations, ε±1.

G is not connected as ε−1 is torsion of order
2.

All the ∗–irreps are of the form

ε± ⊗ πn = πn ⊗ ε±.
πn of dim n+ 1 with positive weights

G = SUq(2)× Z2 (Rosso)
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The identity component of a CQG

Classical case

For locally compact compact groups G, duality

theorems allow to determine the identity

component from the dual object Ĝ. Hence, in

the compact case, in algebraic terms.

Let Ĝ be the dual hypergroup (set of irreps

with ⊗ and conjugation) and

Ĝtor = {u ∈ Ĝ generating a finite subhypergp}.

Then (Pontryagin, Iltis):

Ĝ/G0 = Ĝtor,

G0 = {g ∈ G : u(g) = 1, u ∈ Ĝtor}.
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Hence G0 corresponds to the process of

eliminating torsion in Ĝ.

G is totally disconnected iff Ĝ = Ĝtor.

• In the general case, these ideas do not suffice

to define G0, since different quantum groups,

may have the same hypergroup.

Unlike the classical groups, this may happen

even among the connected ones! (e.g. Ao(F )

and SU(2))

To define G0 we use instead the representation

category

Ĝ vs Rep(G)
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Quantum case

Definition G0 is the quantum subgroup
‘generated’ by all the connected quantum
subgroups K of G. In other words,

(u, v)G0
= ∩K(u �K, v �K).

Proposition G0 is the largest connected
quantum subgroup of G

Corollary Every torsion representation of G
restricts to the trivial representation of G0.
This reads, if G0 is normal,

Rep(G)tor ⊂ Rep(G/G0).

In the classical case, the converse holds as well
by profiniteness of G/G0, but it does not hold
for CQG.
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Example If G = C∗(Γ), then

AG0
= C∗(Γ/ρ(Γ)), AG/G0

= C∗(ρ(Γ))

where ρ(Γ) is the torsion-free radical of G, of

Brodsky and Howie, i.e. the unique minimal

normal subgroup such that Γ/ρ(Γ) is torsion-

free.

• The results of B-H when interpreted for

quantum groups mean that under certain

conditions

G0 contains a 1-dim torus

If Γtor is a subgroup,

ρ(Γ) = Γtor.

In general, only ρ(Γ) ⊃ Normal(Γtor) holds.
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Example (Chiodo and Vyas, 2011)

Γ = (Zm ∗ Zn) ∗xy=zp Z,

Γtor = {conjugates to x or y},

Γ/Normal(Γtor) = Zp

• Computing ρ(Γ):

Set

N1 = Normal(Γtor),

Nr = Normal(γ ∈ Γ : γn ∈ Nr−1).

Then

N1 ⊂ N2 ⊂ . . .

ρ(Γ) = ∪rNr.
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Main results

Examples with non-normal G0

Theorem Let Gc be a connected compact
quantum group and let Γ be a discrete group
and consider the free product quantum group

G = Gc ∗ C∗(Γ).

a) If Gc has a non-trivial irreducible
representation of dimension > 1 and Γ has a
non- trivial element of finite order then G0 is
not normal.
b) If Γ = Γtor then G0 = Gc,
c) If Gc is a semisimple Lie group, G has no
no-trivial normal connected subgroup.

Being free products of quantum groups, these
examples are highly noncommutative.

sketch of proof of a) The main ideas are that
a normal subgroup N / G always corresponds
to a full normal tensor subcategory

Rep(G/N) /Rep(G).
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and that we know all the irreps of a free

product quantum group.

If G0 were normal, the irreps structure of free

products allows to find one,

uγu ∈ Rep(G/G0), u ∈ Ĝc, γ ∈ Γ,

with non trivial restriction to Gc if dim(u) > 1

and γ ∈ Γtor. But γ becomes trivial on G0,

hence uγu becomes uu on G0, which is not

trivial.

Normal tensor subcategories

• Normality of a full tensor subcategory of

Rep(G) is a condition that generalizes the

notion of normal subgroup of a discrete group:

If Λ ⊂ Γ is an inclusion of groups,

L = C∗(Λ), G = C∗(Γ),

Rep(L) is normal in Rep(G) iff Λ is normal

subgroup in Γ.
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• In the classical case every full tensor

subcategory of Rep(G) is normal.

• In general, normality of

Rep(L) ⊂ Rep(G)

is a special case of the condition that

characterizes homogeneous spaces of G

AL → AG

arising from quantum subgroups, L = G/K.

(P-Roberts ’06). The speciality corresponds to

the fact that the subgroup is normal (i.e. L is

a quantum group)

L = G/N.

Normality of a tensor subcategory is defined by

the following equivalent conditions.
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Theorem Let S ⊂ Rep(G) be a full

tensor C∗–category with conjugates and AL
the corresponding quotient qg. The following

conditions are equivalent. For any irreducible

u ∈ S,

a) 1u⊗Hv⊗1u◦R ⊂ H(uvu)S
, R ∈ (ι, uu), v ∈ S

irreducible,

b)
∑
i u
∗
ijxui,s ∈ AL, x ∈ AL,

c) there is a normal compact quantum

subgroup N such that L = N\G
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Totally disconnected CQG

Definition If G0 is the trivial group, G will be

called totally disconnected.

Definition A compact quantum group will be

called profinite if its Hopf C∗–algebra is the

inductive limit of finite dimensional Hopf C∗–
subalgebras.

• Profiniteness implies total disconnectedness

• A CQG is profinite iff every representation is

torsion.

• If every irreducible representation of Rep(G)

is a torsion object, then G is totally

disconnected.

Indeed, irreps of G0 are restrictions of irreps of

G. They need to be torsion, hence trivial.

27



• For example, if Γ is a torsion group,

Γ = Γtor,

then G = C∗(Γ) is totally disconnected,

G0 = {1}.

In this case, the finiteness problem for G/G0

becomes the question: Is any finitely generated

torsion group finite?

This is precisely the Burnside problem, which

has a negative answer.

Proposition Let Γ be a finitely generated,

infinite torsion group, with generators g1, . . . gn.

Then

u = g1 ⊕ · · · ⊕ gn

is a non torsion representation of C∗(Γ). Hence

C∗(Γ) is not finite but totally disconnected.
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• Literature on the various problems of

Burnside, Milnor and von Neumann for discrete

groups provides many non-amenable examples

(Golod-Shafarevich ’64, Olshanskii ’80, Adian

’83, Ershov 2011), but also of intermediate

growth, hence amenable (Grigorchuk ’84).

• If G0 6= {1} then G/G0 may be infinite even

if its representations, regarded as G–reps, are

assumed to commute tensorially with every

other representation of G! This is due to the

fact that there are finitely generated (in fact f.

presented) Γ with infinite Γtor and at the same

time satisfy (Remeslennikov ’74).

Γtor ⊂ Z(Γ).

• On the positive side, almost nilpotent

discrete groups Γ have finite torsion subgroup

Γtor. In addition, by Milnor, Wolf, Gromov

theorems (late 60s-80s) they are precisely

those with polynomial growth...

29



The torsion subcategory

Rep(G)tor := full{torsion reps of G}

• If G0 is normal and G/G0 is profinite then

Rep(G)tor = Rep(G0\G)

hence,

- Rep(G)tor has ⊗,⊕
- Rep(G)tor is a normal subcategory of Rep(G).

But in general, Rep(G)tor may behave badly.

• Rep(G)tor has conjugates and subobjects.

• For a discrete group, G = C∗(Γ),

{irreps of Rep(G)tor} = Γtor,

hence Rep(G)tor may easily be not tensorial

when noncommutative.
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• Rep(G)tor may lack direct sums, even if it

has tensor products (e.g. all infinite f.g. torsion

groups).

In general, torsion gives little information onf

G0, since,

< Rep(G)tor,⊗,⊕ >⊂ {u ∈ Rep(G) : u �G0
= 1}.

Moreover, the inclusion may be strict (CV

examples)

• The following inclusions are strict for CMQG

{tot disc} ⊃ {torsion irreps} ⊃ {finite}

For the first, the reason is that CV examples

are totally disconnected. Indeed, for all γ ∈ Γ,

γp ∈ Normal(Γtor) ⊂ ρ(Γ), hence γ ∈ ρ(Γ) since

Γ/ρ(Γ) is torsion-free. Thus ρ(Γ) = Γ.

If G/G0 is not profinite, one can derive

information on maximal normal connected

subgroup Gn ⊂ G0 from torsion.
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Torsion degree

• Generalizing the computation of ρ(Γ), we

make an inductive process to eliminate torsion

in Rep(G). The result is a canonical sequence

of normal subgroups,

G0 = G ⊃ G1 ⊃ . . .

Except for now it is not clear to us whether

the limit of this sequence is connected. We

thus use transfinite induction and extend this

sequence to the ordinals, Gα, which must

stabilize for cardinality reasons.

Definition torsion degree(G) = smallest δ s.t

Gδ = Gδ+1.

It is an invariant measuring complexity of

torsion.
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Theorem The torsion degree of G is the

smallest ordinal δ such that Gδ is connected.

Moreover,

Gδ = Gn =: maximal connected normal subgp.

• If G0 is normal and G/G0 is profinite,

torsion degree(G) ∈ {0,1},

with 0 corresponding to connected groups.

• For discrete groups, torsion degree ≤ ω.

• torsion degree(Chiodo−Vyas) = 2

• torsion degree(Burnside exs) = 1

• A generalization of examples due to Chiodo

and Vyas, shows that all the ordinals ≤ ω are

realized by discrete groups.
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Theorem For the examples with non-normal

G0:

G = Gc ∗ Γ

with Gc semisimple Lie group and Γ = Γt, we

have:

a) torsion degree(G) ≤ 2,

b) torsion degree(G) = 1 if Z(Gc) = {1},
c) torsion degree(G) = 2 for Gc = SU(2).

a) is due to the fact that the subgroups turn

out to be central in Gc.

Normality of G0 and finiteness of G/G0

Theorem For a CQG G the following are

equivalent,

a) G0 is normal and G/G0 is finite,

b) Rep(G)tor is tensorial, finite and normal.

In this case,

c) torsion degree(G) ≤ 1

d) Rep(G/G0) = Rep(G)tor.
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sketch of proof a)⇒ b) is easy. b)⇒ a)

This includes the problem of showing that

torsion degree(G) ≤ 1. There is G1 / G such

that Rep(G)tor = Rep(G/G1). Since reps of

Rep(G)tor are trivial on G0 then G1 ⊃ G0.

Hence the theorem amounts to show that G1

is connected. Information from TK process

shows that every torsion rep of G of restricts

to trivial on G1. Hence we need to show that

free reps of G restrict to free reps on G1. In

the classical case this follows from a theorem

of Clifford (later greatly developed by Mackey)

on the analysis of restrictions of reps to a

normal subgroup with finite index. In general,

to understand restriction u �G1
we make a

detailed use of the theory of induction for

tensor C∗–categories developed with Roberts

in 2009.

Examples show that all the conditions are

independently needed.
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The Lie property

The previous characterization is a useful
reduction of the problem.

• One one hand, the examples show that
for positive results to our problem, we should
take into account commutativity on Ĝ, or at
least on Ĝtor. The latter will not suffice, by
Remeslennikov examples. And perhaps neither
the former.

• We look for geometric conditions on G.

On the other hand, finiteness of Rep(G)tor is a
special case of a more fundamental problem, of
interest independently of commutativity of Ĝ:
We need at least to have it finitely generated!

• For which cmqg G is any quotient quantum
group

AL ↪→ AG

again matrix?

36



Definition We call such cqg of Lie type.

Equivalently, Ĝ satisfies an ascending chain

condition on subhypergroups: Every increasing

sequence

L1 ⊂ L2 ⊂ . . .

eventually stabilizes.

• In the classical case, quotients of compact

Lie groups are Lie, hence of Lie type.

• For discrete groups, the corresponding

property becomes Noetherianity: every

subgroup is finitely generated.

• {f.g. almost nilpotent} ⊂ {almost polycyclic}

⊆ {Noetherian group ring} ⊂ {Noetherian group}

• ⊆ is a long-standing open problem.
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Examples

• CQG with representation ring isomorphic

to that of a Lie group are of Lie type. For

example, Ao(F ) and Gq are of Lie type.

• Au(F ) is not of Lie type. This is the analogue

of the fact that F2 is not Noetherian.

Theorem If the representation ring

R(G) := ZĜ

is left Noetherian (a.c.c. on left ideals) then G

is of Lie type.
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Conclusions

Corollary Let G be a CQG group of Lie

type with commutative torsion subcategory

Rep(G)tor. Then Rep(G)tor is tensorial and

finite. Hence, if also normal,

• G0 is normal in G

• G/G0 is finite,

• Rep(G/G0) = Rep(G)tor

Corollary If R(G) is commutative and finitely

generated (as a ring!) then it is Noetherian,

hence of Lie type.
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Problems

Can one generalize the previous corollary to
just commutative fusion rules for CMQG?

Ring finite generation (of R(G)) implies
hypergroup finite generation (of Ĝ). The
converse holds in the classical case (Atiyah).
We do not know whether it holds in general,
assuming commutativity of R(G).

We tend to believe answers are negative, for
the following remarks:

• For compact connected Lie groups an
abstract characterization of R(G) is known
(Osse, 1997). The simplest axiom is that R(G)
is finitely generated as a ring.

• The last corollary is a special case of
a recent theorem of Hashimoto (2005) in
geometric invariant theory. (However, our
proof is independent.)
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Hashimoto showed that if

A ⊂ B

are commutative algebras over some

commutative Noetherian ring such that B is

finitely generated and A is pure (e.g. a direct

summand), then A is finitely generated.

This originates from the problem of finite

generation of rings of polynomial invariants of

algebraic groups acting on a polynomial ring.

[Hilbert, Nagata, Mumford...]
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G0 for the compact real form of U<0(sl2)

Real forms:

E∗ = F, K∗ = K, Uq(su2),

E∗ = −F, K∗ = K, Uq(su1,1).

Uq(su2) has no f.d. ∗–representation on a
Hilbert space.

Uq(su1,1) admits two inequivalent irreducible
Hilbert space ∗–reps for each dimension

u±n

that can be explicited computed. They all
commute.

ε−1 : K → −1, E, F → 0

is a nontrivial torsion ∗–representation.

u±1 satisfy

u1 = u−1, u2
1 > ε−1
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Fusion rules show that every irreducible admits

a polynomial expression in ε−1 and u1, hence

R(Uq(su1,1)) is a Noetherian commutative ring.

It can be checked explicitly that

Rep(Uq(su1,1))tor = 〈ε−1〉

and that it is normal. Hence

G/G0 = Z2.

Moreover,

G0 = SU|q|(2).
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