The Kadison-Singer problem in Il; factor framework

Rome, July 8th 2013

Sorin Popa

1/13



The work of Kadison-Singer in 1959

The KS pure state extension problem

Given a maximal abelian *-subalgebra (MASA) A C B(¢2Z) (notably, the
diagonal MASA, A = (*°Z, or the diffuse MASA, A = L(Z)), does any
pure state on A extend to a unique state on M = B(¢?Z) ? More
generally, we'll consider this question/property for MASAs in arbitrary vN
algebras, A C M, and call it the KS problem/property for A C M.

Theorem (Paving reformulation of KS problem)

Let A C M = B({?Z) be a MASA (more generally A a MASA in an arbi-
trary vN algebra M). Then A C M has the KS property iff it satisfies

The paving property: ¥x € M, Ve > 0, dqx € P(A) a finite partition of 1
such that d(Xxqxxqk, A) < ed(x, A) (any x € M can be e-paved, Ve > 0).

Moreover, if these conditions are satisfied then: there exists a unique
conditional expectation E of M onto A, it is unique, and lim, ¥, p/xp}
= E(x), Ven-paving {p}}«, with e, — 0; also, V pure state 1) on A, ¢ o E
is the unique state extension of ) to M, and it is pure. 2/13



Proof of < in KS theorem

If 1p: A— C is a pure state, then it is a (unital) algebra x-morphism, so

$(P(A)) = {0,1}.

Claim: If ¢ is a state on M extending 1) then A is in the centralizer of ¢,
i.e. p(yx) = ¢(xy), Vx € A, y € M. Sufficient to prove for y = p € P(A)
with 1(p) = 0 (because it holds for y = 1). But by C-S inequality

o (xp)| < p(xx*)/24p(p)*/? = 0 and similarly o(px) = 0.

Thus, p(x) = o(Xkprxpk), ¥x € M, Y{pk}« C P(A) finite partition of 1.
Taking limits, we get o(x) = p(E(x)) = ¥(E(x)).

This shows that: 1 o E is the unique state extension of ¢ to M (and
therefore 1) o E pure); E is a conditional expectation, and it is unique.
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Proof of = in KS theorem

Let b= b* € M and fix t € Q where A= C(£2). Denote

v =inf{a(t) | a=a* € A;a> b}, 11 =sup{a(t) | a=a" € A a < b}.
We first show that the hypothesis implies v = 1.

For if not, then the maps ¢; : A+ Cb — C defined by

Yi(y +ab) =y(t) +ayi, i=0,1, y € A, a € C, are well defined, linear
and positive; thus ||¢;]| = 1 and by Hahn-Banach each v; can be extended
to a norm-1 linear functional ¢; : M — C; we have thus obtained two
states g, w1 on M, which extend the pure state t and are distinct
(because ¢o(b) # ¢1(b)), contradicting the assumption. Thus, vo = 71.

Let now € > 0 and for each t € Q denote
c=inf{a(t)|a=a"€ Aja> b} =sup{a(t)|a=a" € A a < b}.

Let af € A be selfadjoint elements such that a;” > b > a; and
ct +¢/2 > af (t), ay (t) > ¢t — /2.
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Proof of = in KS theorem (continuation)

By the continuity of af € A= C(Q) as a function on Q, there exists an
open-closed neighborhood € of t in £ such that

ct+e>af(t),a; (') > ct —e,Vt' € Q.

Thus, if pr € C(Q) is the characteristic function of Q;, then p; € P(A)
satisfies

(¢t +€)pe > af pr > pebpe > a; pr > (¢t — €)po.
In particular, ||psbp: — ctpt]| < €. Since Q is compact, there exist
ti, ..., tp € Q such that U;Q;, = €. If we now take g; to be the
characteristic function of €2;, and for each j > 2, p; to be the
characteristic function of Q;\ UJ,-';iQ,-, viewed as a projection in A, it
follows that ||X;q;bq; — Zjcyqjl| < e.
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Conclusions about MASAs in B(/?Z) (K-S 1959)

e K-S went on and proved that L(Z) C B(¢{?Z) doesn't satisfy the KS
property (equivalently, the paving property), by showing that there exist
two distinct conditional expectations from B((?Z) onto L(Z) (we saw that
uniqueness of c.e. is a prerequisite for KS property to hold).

e K-S have noticed that the map E that assigns to [x;] € B({?Z) its
diagonal [x;d;;] € £°°Z, is the unique conditional expectation of B({?Z)
onto ¢*°Z and that each "vector pure state” on £°°Z has unique state
extension. But they were not able to settle the case of arbitrary (singular)
pure states, thus leaving the KS property for the diagonal, atomic MASA
£°°7, as an open problem. Yet they expressed the belief that the problem
has a negative answer !

The Classic Kadison-Singer Problem:

Is it true that any pure state on ¢*°Z extends to a unique (pure) state on
B(¢?7) (i.e. £>°7Z C B({*>Z) has the KS property)? Equivalently, does
(7, C B({?Z) have the paving property?

6/13



Finite dimensional reformulations

e Anderson 1978: Paving holds iff uniform paving holds: Ve > 0,
3n = n(e) such that Vx € B((>Z) with 0 on the diagonal,

3p1, s Pn € £°Z with Zypr =1 and [[Zxprxpi|| < ellx].
Proof: by taking direct sum of operators...

e Anderson 1979: Uniform paving holds iff uniform finite dimensional
paving holds: Ye > 0, 3n = n(e) such that Ym and Vx € M, m(C) with 0
on the diagonal Dy,, 3p1, ..., pn € P(Dy) partition of 1 satisfying
|Zkpixpill < €||x]|. In fact, it is sufficient to prove this for some g¢ < 1.

Notation Given a MASA in a vN algebra A C M, we denote by

n(A C M;e) the minimum over all n with the property that ¥x € M,
3pi, ..., pn € P(A) with Tpx =1 and d(Xprxpk, A) < ed(x, A) and call it
the e-paving size of A C M.

e With this notation, Anderson’s 1979 result actually reads:
n({>7 C B({?Z);€) = sup,, "(Dm C Mmxm(C);€), Ve > 0.
Proof: > clear and < by taking weak limits of partitions in D,
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Further developments 1980-2012

e Berman-Halpern-Kaftal-Weiss 1987: any matrix with non-negative
entries can be paved; also any Riemann-integrable function on T, viewed
(via Fourier expansion) as an element in L(Z) ~ L*°(T) acting on

(27, ~ [?(T) as left convolution/multiplication operator, can be paved.

e Bourgain-Tzafriri 1991: Paving of elements in L(Z) ~ L*°(T) with
Fourier expansion satisfying certain growth properties. Paving of
multiplication operators in L°°(T) became a famous conjecture in
harmonic analysis.

e Akemann-Anderson 1994: To prove the unif. fin. dim. paving conjecture
it is sufficient to prove: 39 > 0 and ¢ < 1 such that for all m and all

q € P(Mmxm(C)) with diagonal entries < §, 3p € P(Dy,), satisfying
llpgp + (1 — p)g(1 — p)|| < c. (Proof: dilation trick)

e An equivalent reformulation in frame theory (the Feichtinger conjecture);
much interest in applied math and engineering.

e During 2000-2012 much work by Weaver, Paulsen&collaborators,
Casazza&collaborators, etc 8/13



The Marcus-Spielman-Srivastava (MSS) solution
to the classic KS problem, June 2013

Theorem (MSS: math.OA/1306.3969)

If 6 > 0 is given, then for any m and any projection g € Mpxm(C) with all
entries on the diagonal < §, there exists a projection p € D,, such that

lpgp + (1 = p)a(1 — p)|| < (1 + V20)?/2.

Proof Very ingenious estimations of norms of matrices, by estimating the
largest roots of the corresponding characteristic polynomials (method of
interlacing polynomials).

e Entails n(¢®Z c B({?Z);€) = sup,, n(Dm C Mmxm(C);e) < Ce™°.
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Il; factor formulations of the KS problem

Two simple facts (P: 1997, resp. 2009/march 2013)

If Ais a separable MASA in a Il; factor M, then there are non-normal
conditional expectations of M onto A, thus A C M cannot satisfy the
KS property nor the paving property.

Let w be a free ultrafilter. Denote D the Cartan “diagonal” subalg. of
the hyperfinite Il; factor R. The classic KS is equivalent to the KS for
the (non-separable) MASAs D¥ C R¥, resp. MyDpy C My My m(C).
More precisely, both these inclusions have the same paving size as
(7, C B({?Z), and thus equal to sup,, N(Dm C Mmxm(C)).

Corollary to MSS result

D¥ C R¥, Ny,Dpy C NyMpym(C) satisfy the KS property, i.e. any pure
state on D% (resp. I,D,,) extends to a unique (pure) state on R“ (resp.
NwMmxm(C)). Moreover, the order of magnitude of the paving size of
both these inclusions is < €. Also, the trace preserving expectation is

the unique expectation.
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KS property for ultraproducts of singular MASAs

e Recall that if A is a MASA in a ll; factor M, then N(A) denotes the
normalizer of Ain M, {u € U(M) | uAu* = A}. The MASA AC M is
singular if Njy(A) = U(A) (Dixmier 1954). A typical example is

L(Z) C L>([0,1]*) x Z = R (P 1981). But in fact any separable Il; factor
M has singular MASAs (P 1981).

Thm (P: math.OA/1303.1424)

Let A, C M,,, m > 1, be singular MASAs in II; factors and denote

A =Tl A, C N, ,M, = M, their ultraproduct, over a free ultrafilter w.
Then A C M satisfies the KS property, i.e. any pure state on A has a
unique state extension to M. Moreover, the order of magnitude of the
paving size of A C M is < £7%. Also, the trace preserving expectation is
the unique expectation of M onto A.
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About the proof

We first show that it is sufficient to pave e € P(M) with Ep(e) = 7(e)1.
Key part is to show that VB C M separable with B L A, Ju € U(A) Haar
s.t. T(I'If‘zlx;u”") =0, Vk, Vx; € B& C1, n; # 0 for all i but possibly one.

Thus, B and By = {u}” generate B x By. (Obs: By Kesten 1959, this
already implies Vv € U(B) Haar has free pavings: if p1, ..., pn € P(Bo)
partition with 7(p;) = 1/n, then | X_; pjvpi|| = 1/+/n.)

More importantly, by Voiculescu's 1985 norm calculation for products of
free independent projections g, f with 7(q) < 7(f) < 1/2 one has:

la(f = 7(F)L)all = 7(q) — 27()7(q) + /47 (F)(L — 7(£))7(a)(1 — 7(q))
By applying this to B = Ce + C(1 — e) and to partitions pi, ..., pn € B
with n > 7(e)~!, one obtains the desired pavings of e:

Ixipiepi — (€)1l < 2/+/n.
Note: if p € P(Bp) with 7(p) =1/2 and e € P(B), 7(e) = < 1/2, then

lpep + (1 = ple(1 = p)| = 1/2+ /6(1 = 9).
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Characterizations of singularity for MASAs

Question: Can one find such (asymptotic) free independence in arbitrary
MASAs A C M? No, because if v € Ny (A) then vuv*u* = u*vuv*,

Yu € U(AY), so T(vuv*u*vu*v*u) = 1. Thus, 4-independence fails for
non-singular MASAs (where for n > 1, By C A“ a subalgebra and

X C M¥ & A¥ a subset, we say that By is n-independent to X if

(M5 uix;) =0, Yk < n, u; € By © C, x; € X). We actually have:

Thm (P: math.OA/1303.1424)

Let A be a MASA in a ll; factor M. Given any separable subset

X C M® & AY, there exists a diffuse subalgebra By C A“ such that By is
3-independent to X. Moreover, the following are equivalent for A:

1°Vx e Mo A, 3By C A diffuse such that By is 4-independent to {x}.
2° A'is singular in M.

3° Given any X C M“¥ © A separable, there exists By C A¥ diffuse such
that By is free independent to X.

4° A% is maximal amenable in M¥.
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