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What this talk is about

PRELUDIO
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The world . . .

. . . is two-dimensional.
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The chiral world . . .

. . . is one-dimensional.

“Time is Space”, 1 lightyear = 9.450.000.000.000.000 m
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The projective chiral world . . .

. . . is a circle.
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The most important physical observables in Conformal QFT are

CHIRAL QUANTUM FIELDS.

Energy and momentum densities, charge densities, . . .
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Chiral quantum fields . . .

. . . are assigned to points or intervals
on the circle.
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“Chiral quantum cloning”

Roberto’s canonical isomorphism

Two copies of a quantum field in one interval = . . .

. . . = one quantum field in two disjoint intervals.

[Longo-Xu ’04, Kawahigashi-Longo ’05]
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What is such an isomorphism possibly
good for?

Applications:

Study of representation theory

NCG spectral invariants

Multilocal symmetries

Modular theory of two-intervals

C2 cofiniteness (?)
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TEMA CON VARIAZIONI
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The general setting

AQFT on the circle

Localized von Neumann algebras A(I )

Local commutativity

Diffeomorphism (= conformal) covariance

Vacuum and positive-energy representations
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Recall: The split property

. . . states that the map a⊗ b 7→ ab for a ∈ A(I1) and b ∈ A(I2)
is an isomorphism of von Neumann algebras A(I1)⊗ A(I2) and
A(I1) ∨ A(I2) ≡ A(I1 ∪ I2) (whenever I1 and I2 do not touch).

. . . expresses the possibility of independent preparations of
partial states on the subalgebras A(I1) and A(I2).

. . . follows from a decent growth of the dimensions of the
eigenspaces of L0 (namely, e−βL0 should be trace-class in the
vacuum representation, Buchholz-Wichmann 1986).

. . . is assumed throughout.
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Roberto’s canonical isomorphism

. . . composes diffeomorphisms z → ±
√

z with the split isomorphism:

A⊗2(I ) ≡ A(I )⊗ A(I )
Diff⊗Diff−→ A(I1)⊗ A(I2)

Split iso−→ A(I1) ∨ A(I2)

[Longo-Xu ’04, Kawahigashi-Longo ’05]
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Chiral quantum cloning

ιI = χI1∪I2 ◦ (δ√· ⊗ δ−√·) : A⊗2(I )→ A(I1 ∪ I2),

where I1 ∪ I2 ≡
√

I and A⊗2(I ) ≡ A(I )⊗ A(I ).

Some facts to memorize:

These isomorphisms do not preserve the ground state (vacuum)
because the tensor product suppresses all correlations, and
because diffeomorphisms do not preserve the vacuum.

They are defined for each interval I , but they are compatible as
I increases.

They extend to the entire circle minus a point.

Everything generalizes to n copies, n intervals, using n
√
·.
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Mode-doubling

For Virasoro and affine Kac-Moody algebras it is well-known
that

L̂n =
1

2
L2n +

c

16
δn0 and Ĵa

n =
1

2
Ja

2n

satisfy the same commutation relations as Ln and Ja
n (with

central charge 2c resp. level 2k).

This is “one half” of the canonical isomorphism, applying ι to
T (z2)⊗ 1 + 1⊗ T (z2) resp. Ja(z2)⊗ 1 + 1⊗ Ja(z2).

The “other half” requires half-integer modes, ie, is twisted.
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VAR 1: Representation theory

Longo-Xu (2004)
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The canonical representation

The canonical isomorphisms

ιI = χI1∪I2 ◦ (δ√· ⊗ δ−√·) : A⊗2(I )→ A(I1 ∪ I2)

extend to a representation π of A⊗2 on S1 \ {−1} = R.

The extension to the entire circle S1 is not possible. Instead
π differs on both sides of z = −1 by the flip a⊗ b 7→ b ⊗ a.

⇒ π is a soliton (or twisted) representation of A⊗2(R).

π restricts to a true (DHR) representation πB of the
flip-invariant subnet B on R.

πB is reducible with exactly two irreducible components.
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Recall: Dimension and
µ-index

The dimension dπ (possibly ∞) of a representation is the
square root of the index of the subfactor π(A(I )) ⊂ π(A(I ′))′.
[Longo 1989]

The µ-index (possibly ∞) of a chiral CFT on S1 is the index of
the two-interval subfactor A(I1 ∪ I2) ⊂ A((I1 ∪ I2)′)′ in the
vacuum representation.

The µ-index equals the “global index”

µA =
∑
π

d2
π.

[Kawahigashi-Longo-Müger 2001]
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The Longo-Xu dichotomy
The CMS property:
“A has at most countably many sectors, all with finite dimension.”

If A has the CMS property, then A⊗2 and B ⊂ A⊗2 have the
CMS property.

In this case, πB = π1 ⊕ π2 has finite dimension.

Because the index of B(I ) ⊂ A⊗2(I ) is two, it follows that π
has finite dimension.

But d2
π = the index of πI (A

⊗2(I )) ⊂ πI ′(A
⊗2(I ′))′ equals the

two-interval µ-index of the net A. Thus, µA is finite.

⇒ If A has at most countably many sectors, then either
the number of sectors is actually finite, or some sector has
infinite dimension.

The first possibility also implies strong additivity, hence
complete rationality.
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VAR 2: NCG spectral invariants

Kawahigashi-Longo (2005)

KHR ”Mathematics and Quantum Physics” Chiral Quantum Cloning 20 / 34



Recall: Modular theory
Given a von Neumann algebra M and a faithful normal state
ϕ = (Φ, ·Φ), the polar decomposition of the antilinear operator
mΦ 7→ m∗Φ gives rise to an anti-involution J and a unitary
1-parameter group ∆it such that

JMJ = M ′, σt := Ad∆it |M ⊂ Aut(M).

The modular group σt is an “intrinsic dynamics” of M,
depending only on the state.

For M = A(S1
+) and Φ = Ω, one has ∆it = e−2π(L1−L−1)t =

scale transformation of R+ (Bisognano-Wichmann property,
geometric modular action), and J =CPT
(Brunetti-Guido-Longo 1993).

In particular, the Möbius group (in 4D: the Poincaré group) is
“of modular origin”.
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The Kawahigashi-Longo state

Non-commutative elliptic geometry interpretation of “modular”
free energy and entropy.

n intervals as n→∞ unite discrete and conformal features of
NCG.

Consider the state
ϕn = ω⊗n ◦ ι−1

n

on A( n
√

I ), where ιn is the (n-interval) canonical isomorphism,
and ω⊗n = ω ⊗ · · · ⊗ ω the vacuum state of A⊗n(I ).

Its modular group is generated by −2π
n (Ln − L−n). Hence the

entire diffeomorphism symmetry is of modular origin.

One may extract spectral invariants (“entropies”). In particular,
the µ-index arises as a spectral invariant.

A chiral CFT is expected to live on the horizon of a Black Hole:
Relation to Bekenstein entropy.
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VAR 3: Multilocal symmetries

KHR-Tedesco (2013)
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Multilocal currents

If A is the real free Fermi CFT, then A⊗2 is the complex free
Fermi CFT which has an SO(2) = U(1) local gauge symmetry

γ : (ψ1 + iψ2)(z) 7→ e iα(z)(ψ1 + iψ2)(z).

The generator of the gauge symmetry is a free Bose current
affiliated with A⊗2(I ).

The canonical isomorphism maps the current J into the
two-interval real Fermi algebra A(I1 ∪ I2). The embedded
current is “multi-local”:

ι(J(z2)) =
1

2z
:ψ(z)ψ(−z) : .
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Multilocal symmetries

The multilocal current 1
2z :ψ(z)ψ(−z) : generates

transformations of the real Fermi field

γm = ι ◦ γ ◦ ι−1.

γm are multilocal symmetries = z-dependent SO(2)
“mixings” between ψ(z) and ψ(−z).

Similar with the stress-energy tensor of A⊗2 (= generator of
diffeomorphisms of A⊗2). Embedded into A(I1 ∪ I2), it
generates diffeomorphisms plus mixing.
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VAR 4: Modular theory for 2-intervals

Longo-Martinetti-KHR (2011),
in the light of “multilocal symmetries”.
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Vacuum-preserving isomorphism

Recall: The canonical isomorphism ι does NOT preserve the
vacuum.

For the free Fermi theory (CAR), we found another global and
vacuum preserving isomorphism β : A⊗2(I )→ A(I1 ∪ I2).

Remarkably, β and ι just differ by a gauge transformation of
A⊗2:

β = ι ◦ γ.

Hence, the Kawahigashi-Longo state ϕ2 := ω⊗2 ◦ ι−1 equals
ω ◦ β ◦ ι−1 = ω ◦ γm, where γm = ι ◦ γ ◦ ι−1 is a multilocal
gauge transformation (=mixing) of the two-interval algebra.

The gauge transformation γ absorbs the twist of ι, so that β
extends to the entire S1.
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Two-interval modular group

Because β = ι ◦ γ = γm ◦ ι preserves the vacuum state, it
intertwines the vacuum modular groups of A⊗2(I ) and
A(I1 ∪ I2).

This allows to compute the modular group for the
two-interval Fermi algebra in the vacuum state

σ
(2)
t = γm ◦ ι ◦ σt ◦ ι−1 ◦ γ−1

m .

The canonical isomorphism ι maps σt ∈ Möbius group to the
2-Möbius group, and the gauge transformation γ contributes a
mixing γm of the intervals.

The modular group “acts geometrically plus mixing”:
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The Connes cocycle

Reproduces “in one line” the intricate explicit computation of
the two-interval modular group by Casini and Huerta (2011).

Also allows to compute the Connes cocycle between the
vacuum state and the Kawahigashi-Longo state ϕ2 on the
2-interval algebra:

Let W (f ) = e iJ(f ) be a Weyl operator ∈ A⊗2(Ĩ ) (Ĩ ⊃ I ) that
implements the gauge transformation γ inside I . Let δt the
geometric one-interval modular action. Then f − f ◦ δt is zero
at the endpoints of the interval, and gt := 1I · (f − f ◦ δt) is
continuous with support in I . Hence W (gt) ∈ A⊗2(I ).
The Connes cocycle turns out to be

(Dω : Dϕ2)t = ιI (W (gt)) ∈ A(I1 ∪ I2).
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CODA
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Outlook

Unlike the canonical isomorphism ι, the vacuum-preserving
isomorphism β does NOT descend to subalgebras, such as
Virasoro or current, of the free Fermi theory.

⇒ the two-interval modular groups for these theories remain
unknown.

Expectation: β should exist for all models without sectors
(global index µA = 1)

(. . . many open questions . . . )

Formulation in terms of Vertex Operator Algebras
(“mode-doubling”)?

Relation to C2-cofiniteness?
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IL FINE, and . . .
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(another iso)
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HAPPY YEARS TO COME, ROBERTO!
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