"Chiral Quantum Cloning"

Representation theory, spectral invariants and symmetries in algebraic conformal quantum field theory –

Karl-Henning Rehren

Institut für Theoretische Physik, Universität Göttingen

"Mathematics and Quantum Physics", Rome, July 8, 2013

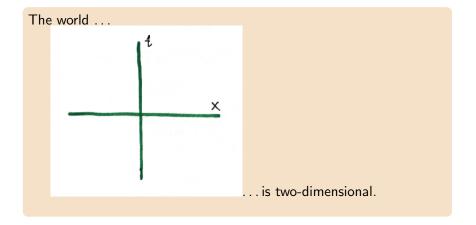
イロト イポト イヨト イヨト

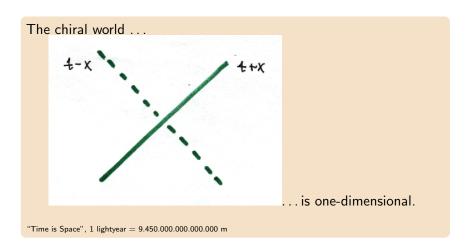
What this talk is about

PRELUDIO

э

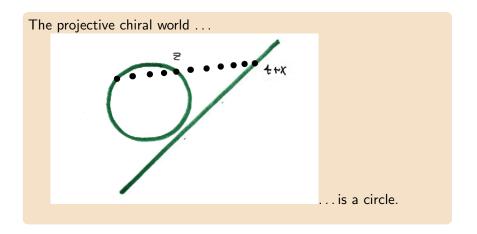
イロト イポト イヨト イヨト





Э

・ロト ・ 一下・ ・ ヨト・



E

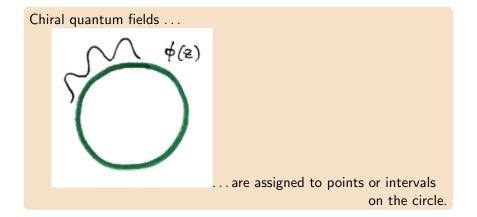
イロト イポト イヨト イヨト

The most important physical observables in Conformal QFT are CHIRAL QUANTUM FIELDS.

Energy and momentum densities, charge densities, ...

3

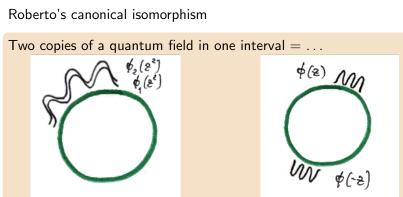
글 돈 옷 글 돈.



Ξ

글 돈 옷 글 돈

"Chiral quantum cloning"



 \ldots = one quantum field in two disjoint intervals.

[Longo-Xu '04, Kawahigashi-Longo '05]

What is such an isomorphism possibly good for?

Applications:

- Study of representation theory
- NCG spectral invariants
- Multilocal symmetries
- Modular theory of two-intervals
- C₂ cofiniteness (?)

TEMA CON VARIAZIONI

э

- 4 同 1 - 4 回 1 - 4 回 1

The general setting

AQFT on the circle

- Localized von Neumann algebras A(1)
- Local commutativity
- Diffeomorphism (= conformal) covariance
- Vacuum and positive-energy representations

Recall:

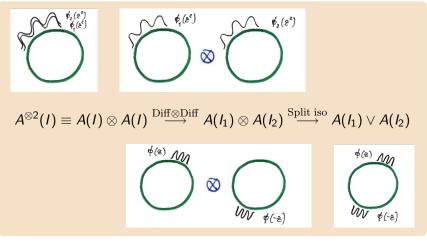
The split property

- ... states that the map $a \otimes b \mapsto ab$ for $a \in A(I_1)$ and $b \in A(I_2)$ is an isomorphism of von Neumann algebras $A(I_1) \otimes A(I_2)$ and $A(I_1) \vee A(I_2) \equiv A(I_1 \cup I_2)$ (whenever I_1 and I_2 do not touch).
- ... expresses the possibility of independent preparations of partial states on the subalgebras $A(I_1)$ and $A(I_2)$.
- ... follows from a decent growth of the dimensions of the eigenspaces of L_0 (namely, $e^{-\beta L_0}$ should be trace-class in the vacuum representation, Buchholz-Wichmann 1986).
- ... is assumed throughout.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Roberto's canonical isomorphism

... composes diffeomorphisms $z \to \pm \sqrt{z}$ with the split isomorphism:



[Longo-Xu '04, Kawahigashi-Longo '05]

イロト イポト イヨト イヨト

Chiral quantum cloning

$$\iota_{I} = \chi_{I_{1} \cup I_{2}} \circ (\delta_{\sqrt{\cdot}} \otimes \delta_{-\sqrt{\cdot}}) : A^{\otimes 2}(I) \to A(I_{1} \cup I_{2}),$$

where $I_1 \cup I_2 \equiv \sqrt{I}$ and $A^{\otimes 2}(I) \equiv A(I) \otimes A(I)$.

Some facts to memorize:

- These isomorphisms do not preserve the ground state (vacuum) because the tensor product suppresses all correlations, and because diffeomorphisms do not preserve the vacuum.
- They are defined for each interval *I*, but they are compatible as *I* increases.
- They extend to the entire circle minus a point.
- Everything generalizes to *n* copies, *n* intervals, using $\sqrt[n]{\cdot}$.

Mode-doubling

 For Virasoro and affine Kac-Moody algebras it is well-known that

$$\widehat{L}_n = rac{1}{2}L_{2n} + rac{c}{16}\delta_{n0}$$
 and $\widehat{J}_n^a = rac{1}{2}J_{2n}^a$

satisfy the same commutation relations as L_n and J_n^a (with central charge 2c resp. level 2k).

- This is "one half" of the canonical isomorphism, applying ι to $T(z^2) \otimes \mathbf{1} + \mathbf{1} \otimes T(z^2)$ resp. $J^a(z^2) \otimes \mathbf{1} + \mathbf{1} \otimes J^a(z^2)$.
- The "other half" requires half-integer modes, ie, is twisted.

VAR 1: Representation theory

Longo-Xu (2004)

- - ≣ →

3

The canonical representation

• The canonical isomorphisms

$$\iota_{I} = \chi_{I_{1} \cup I_{2}} \circ (\delta_{\sqrt{\cdot}} \otimes \delta_{-\sqrt{\cdot}}) : A^{\otimes 2}(I) \to A(I_{1} \cup I_{2})$$

extend to a representation π of $A^{\otimes 2}$ on $S^1 \setminus \{-1\} = \mathbb{R}$.

- The extension to the entire circle S^1 is not possible. Instead π differs on both sides of z = -1 by the flip $a \otimes b \mapsto b \otimes a$.
- $\Rightarrow \pi$ is a soliton (or twisted) representation of $A^{\otimes 2}(\mathbb{R})$.
- π restricts to a true (DHR) representation π_B of the flip-invariant subnet B on \mathbb{R} .
- π_B is reducible with exactly two irreducible components.

Recall: Dimension and μ -index

- The dimension d_π (possibly ∞) of a representation is the square root of the index of the subfactor π(A(I)) ⊂ π(A(I'))'. [Longo 1989]
- The μ-index (possibly ∞) of a chiral CFT on S¹ is the index of the two-interval subfactor A(I₁ ∪ I₂) ⊂ A((I₁ ∪ I₂)')' in the vacuum representation.
- The μ -index equals the "global index"

$$\mu_{\mathcal{A}} = \sum_{\pi} d_{\pi}^2.$$

[Kawahigashi-Longo-Müger 2001]

The Longo-Xu dichotomy

The CMS property:

"A has at most countably many sectors, all with finite dimension."

- If A has the CMS property, then $A^{\otimes 2}$ and $B \subset A^{\otimes 2}$ have the CMS property.
- In this case, $\pi_B = \pi_1 \oplus \pi_2$ has finite dimension.
- Because the index of B(I) ⊂ A^{⊗2}(I) is two, it follows that π has finite dimension.
- But d²_π = the index of π_I(A^{⊗2}(I)) ⊂ π_{I'}(A^{⊗2}(I'))' equals the two-interval μ-index of the net A. Thus, μ_A is finite.
- ⇒ If *A* has at most countably many sectors, then either the number of sectors is actually finite, or some sector has infinite dimension.
- The first possibility also implies strong additivity, hence complete rationality.

イロン 不得 とくほ とくほとう ほ

VAR 2: NCG spectral invariants

Kawahigashi-Longo (2005)

Recall: Modular theory

Given a von Neumann algebra M and a faithful normal state $\varphi = (\Phi, \cdot \Phi)$, the polar decomposition of the antilinear operator $m\Phi \mapsto m^*\Phi$ gives rise to an anti-involution J and a unitary 1-parameter group Δ^{it} such that

$$JMJ = M', \qquad \sigma_t := Ad_{\Delta^{it}}|_M \subset Aut(M).$$

- The modular group σ_t is an "intrinsic dynamics" of M, depending only on the state.
- For M = A(S¹₊) and Φ = Ω, one has Δ^{it} = e^{-2π(L₁-L₋₁)t} = scale transformation of ℝ₊ (Bisognano-Wichmann property, geometric modular action), and J =CPT (Brunetti-Guido-Longo 1993).
- In particular, the Möbius group (in 4D: the Poincaré group) is "of modular origin".

イロト イポト イヨト イヨト

The Kawahigashi-Longo state

- Non-commutative elliptic geometry interpretation of "modular" free energy and entropy.
- *n* intervals as $n \to \infty$ unite discrete and conformal features of NCG.
- Consider the state

$$\varphi_n = \omega^{\otimes n} \circ \iota_n^{-1}$$

on $A(\sqrt[n]{I})$, where ι_n is the (*n*-interval) canonical isomorphism, and $\omega^{\otimes n} = \omega \otimes \cdots \otimes \omega$ the vacuum state of $A^{\otimes n}(I)$.

- Its modular group is generated by $\frac{-2\pi}{n}(L_n L_{-n})$. Hence the entire diffeomorphism symmetry is of modular origin.
- One may extract spectral invariants ("entropies"). In particular, the μ -index arises as a spectral invariant.
- A chiral CFT is expected to live on the horizon of a Black Hole: Relation to Bekenstein entropy.

1 mil 1 1 1 1

VAR 3: Multilocal symmetries

KHR-Tedesco (2013)

Multilocal currents

 If A is the real free Fermi CFT, then A^{⊗2} is the complex free Fermi CFT which has an SO(2) = U(1) local gauge symmetry

$$\gamma:(\psi_1+i\psi_2)(z)\mapsto e^{ilpha(z)}(\psi_1+i\psi_2)(z).$$

- The generator of the gauge symmetry is a free Bose current affiliated with A^{⊗2}(I).
- The canonical isomorphism maps the current J into the two-interval real Fermi algebra A(I₁ ∪ I₂). The embedded current is "multi-local":

$$\iota(J(z^2)) = \frac{1}{2z} : \psi(z)\psi(-z) : .$$

Multilocal symmetries

• The multilocal current $\frac{1}{2z}$: $\psi(z)\psi(-z)$: generates transformations of the real Fermi field

$$\gamma_m = \iota \circ \gamma \circ \iota^{-1}.$$

- γ_m are multilocal symmetries = z-dependent SO(2) "mixings" between $\psi(z)$ and $\psi(-z)$.
- Similar with the stress-energy tensor of A^{⊗2} (= generator of diffeomorphisms of A^{⊗2}). Embedded into A(I₁ ∪ I₂), it generates diffeomorphisms plus mixing.

- 本 伊 ト - オ ヨ ト - - ヨ ヨ

VAR 4: Modular theory for 2-intervals

Longo-Martinetti-KHR (2011), in the light of "multilocal symmetries".

Vacuum-preserving isomorphism

- Recall: The canonical isomorphism ι does NOT preserve the vacuum.
- For the free Fermi theory (CAR), we found another global and vacuum preserving isomorphism $\beta : A^{\otimes 2}(I) \rightarrow A(I_1 \cup I_2)$.
- Remarkably, β and ι just differ by a gauge transformation of $A^{\otimes 2}$:

$$\beta = \iota \circ \gamma.$$

- Hence, the Kawahigashi-Longo state φ₂ := ω^{⊗2} ∘ ι⁻¹ equals ω ∘ β ∘ ι⁻¹ = ω ∘ γ_m, where γ_m = ι ∘ γ ∘ ι⁻¹ is a multilocal gauge transformation (=mixing) of the two-interval algebra.
- The gauge transformation γ absorbs the twist of ι , so that β extends to the entire S^1 .

イロト イポト イヨト イヨト 二日

Two-interval modular group

- Because $\beta = \iota \circ \gamma = \gamma_m \circ \iota$ preserves the vacuum state, it intertwines the vacuum modular groups of $A^{\otimes 2}(I)$ and $A(I_1 \cup I_2)$.
- This allows to compute the modular group for the two-interval Fermi algebra in the vacuum state

$$\sigma_t^{(2)} = \gamma_m \circ \iota \circ \sigma_t \circ \iota^{-1} \circ \gamma_m^{-1}.$$

- The canonical isomorphism ι maps $\sigma_t \in M$ öbius group to the 2-Möbius group, and the gauge transformation γ contributes a mixing γ_m of the intervals.
- The modular group "acts geometrically plus mixing":

The Connes cocycle

- Reproduces "in one line" the intricate explicit computation of the two-interval modular group by Casini and Huerta (2011).
- Also allows to compute the Connes cocycle between the vacuum state and the Kawahigashi-Longo state φ₂ on the 2-interval algebra:
- Let W(f) = e^{iJ(f)} be a Weyl operator ∈ A^{⊗2}(Ĩ) (Ĩ ⊃ I) that implements the gauge transformation γ inside I. Let δ_t the geometric one-interval modular action. Then f − f ∘ δ_t is zero at the endpoints of the interval, and g_t := 1_I · (f − f ∘ δ_t) is continuous with support in I. Hence W(g_t) ∈ A^{⊗2}(I). The Connes cocycle turns out to be

$$(D\omega: D\varphi_2)_t = \iota_I(W(g_t)) \in A(I_1 \cup I_2).$$

CODA

E

イロト イヨト イヨト イヨト

Outlook

- Unlike the canonical isomorphism ι , the vacuum-preserving isomorphism β does NOT descend to subalgebras, such as Virasoro or current, of the free Fermi theory.
- $\bullet \ \Rightarrow$ the two-interval modular groups for these theories remain unknown.
- Expectation: β should exist for all models without sectors (global index $\mu_A = 1$)
- (... many open questions ...)
- Formulation in terms of Vertex Operator Algebras ("mode-doubling")?
- Relation to C₂-cofiniteness?

IL FINE, and ...

э

イロト イポト イヨト イヨト

(another iso)

・ロト ・ 一下・ ・ ヨト・

E

HAPPY YEARS TO COME, ROBERTO!