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Local covariance

A new way to quantum gravity?

Our results:

We have formulated perturbative quantum
gravity as an effective theory that is valid in
given physical situations.

We proposed a notion of gauge invariant
physical quantities of GR and gave a
prescription how to quantize such objects.

The road ahead of us:

Answer some interpretational questions.

Find a relation to experiment: QG corrections
to some processes, black hole radiation,
cosmology.

Understand the small scale structure of
spacetime: relation to NCG.
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Introduction
General relativity: classical theory

Quantization

Outline of the program
Local covariance

Intuitive idea

In experiment, geometric structure is probed by
local observations. We have the following data:

Compact causally convex region O of spacetime
where the measurement is performed,
An observable Φ, which we measure,
We don’t measure the scalar curvature at a point,
but we have some smearing related to the

experimantal setting: Φ(f ) =

∫
f (x)R(x),

supp(f ) ⊂ O.

We can think of the measured observable as a
perturbation of the fixed background metric: a
tentative split into: g̃µν = gµν + hµν .

Diffeomorphism transformation: move our
experimental setup to a different region O′.

M
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Algebraic quantum field theory (locality)

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

It started as the axiomatic framework of Haag-Kastler: a model
is defined by associating to each region O of Minkowski
spacetime an algebra A(O) of observables (a unital C∗-algebra)
that can be measured in O.
The physical notion of subsystems is realized by the condition of
isotony, i.e.: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2). We obtain a net of
C∗-algebras.
Mathematicaly, AQFT makes use of functional analysis
techniques (operator algebras), but its various generalizations
involve many other branches of mathematics.
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Locally covariant quantum field theory

To include effects of general relativity in
QFT one has to be able to describe quantum
fields on a general class of spacetimes. The
corresponding generalization of the
Haag-Kastler framework is called locally
covariant quantum field theory and it uses
the language of category theory.

The category Loc, has globally hyperbolic
spacetimes M .

= (M, g) as objects and its
morphisms are isometric, orientations
preserving, causal embeddings ψ : M→ N.

A model in LCQFT is defined by giving a
functor A from the category of spacetimes to
the category Obs of observables (for
example the category of C∗-algebras).

Katarzyna Rejzner Quantum Gravity 6 / 25



Introduction
General relativity: classical theory

Quantization

Outline of the program
Local covariance

Locally covariant quantum field theory

To include effects of general relativity in
QFT one has to be able to describe quantum
fields on a general class of spacetimes. The
corresponding generalization of the
Haag-Kastler framework is called locally
covariant quantum field theory and it uses
the language of category theory.

The category Loc, has globally hyperbolic
spacetimes M .

= (M, g) as objects and its
morphisms are isometric, orientations
preserving, causal embeddings ψ : M→ N.

A model in LCQFT is defined by giving a
functor A from the category of spacetimes to
the category Obs of observables (for
example the category of C∗-algebras).

N M

ψ

Katarzyna Rejzner Quantum Gravity 6 / 25



Introduction
General relativity: classical theory

Quantization

Outline of the program
Local covariance

Locally covariant quantum field theory

To include effects of general relativity in
QFT one has to be able to describe quantum
fields on a general class of spacetimes. The
corresponding generalization of the
Haag-Kastler framework is called locally
covariant quantum field theory and it uses
the language of category theory.

The category Loc, has globally hyperbolic
spacetimes M .

= (M, g) as objects and its
morphisms are isometric, orientations
preserving, causal embeddings ψ : M→ N.

A model in LCQFT is defined by giving a
functor A from the category of spacetimes to
the category Obs of observables (for
example the category of C∗-algebras).

A(N)

A

N M

ψ A

A(M)

Aψ

Katarzyna Rejzner Quantum Gravity 6 / 25



Introduction
General relativity: classical theory

Quantization

Basic structures
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Kinematical structure

The configuration space (physical quantities we want to
measure): space of smooth contravariant rank 2 tensors on M,
E(M) = Γ((T∗M)⊗2).

Observables: smooth compactly supported multilocal functionals
on E(M). We denote this space by F(M). F is a functor from
Loc to Vec (the category of locally convex top. vector spaces).
To implement dynamics we use a certain generalization of the
Lagrange formalism of classical mechanics.
In general relativity we have the Einstein-Hilbert Lagrangian

L(M,g)(f )[h]
.
=

∫
R[g̃]f d vol(M,g̃), g̃ = g + h.

We need the cutoff function f because M is not compact. The
space of such test functions is denoted by D(M).
The action S(L) is an equivalence class of Lagrangians, where
L1 ∼ L2 if supp(L1,M − L2,M)(f ) ⊂ suppdf ∀f ∈ D(M).

E(M)
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Basic structures
BV complex

Dynamics and symmetries

The Euler-Lagrange derivative of S is defined by〈
S′M(g̃), h

〉
=
〈

SM(f )(1)(g̃), h
〉

, where f ≡ 1 on supph.

Abstractly, S′M is a 1-form on E(M).
The field equation is: S′M(g̃) = 0.
A symmetry of S is a vector field
on E(M), X ∈ V(M) that characterizes
the direction in which S is locally constant,
i.e. ∀ϕ ∈ E(M):

〈
S′M(g̃),X(g̃)

〉
= 0.

Let ES(M) denote the space of solutions to field equations. We
want to characterise the space of functionals on ES(M) which
are invariant under all the local symmetries of S: invariant
on-shell functionals Finv

S (M).

M
supp(f )

supp(h)
f ≡ 1
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Basic structures
BV complex

Fields as natural transformations

In the framework of locally covariant field
theory [Brunetti-Fredenhagen-Verch 2003] fields are
natural transformation between certain
functors. Let Φ ∈ Nat(D,F) (both D and F
are treated as functors into Vec).

The condition for Φ to be a natural
transformation:

ΦO(f )[χ∗h] = ΦM(χ∗f )[h].

In classical gravity we understand physical
quantities not as pointwise objects but rather
as something defined on all the spacetimes
in a coherent way.

M χ(O)

O

χ
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Diffeomorphism invariance

For GR symmetries are infinitesimal diffeomorphisms, i.e.
elements of Γc(TM). Let us choose a sequence
~ξ = (ξM)M∈Obj(Loc), ξM ∈ Γc(TM).

After applying the exponential map we obtain αM

.
= exp(ξM).

The exponentiated action of diffeomeorphisms is given by:
(~αΦ)(M,g)(f )[g̃] = Φ(M,g)(α

−1
M ∗ f )[α∗Mg̃].

The derived action reads:
(~ξΦ)(M,g)(f )[g̃] =〈

(Φ(M,g)(f ))(1)[g̃],−LξM g̃
〉

+ Φ(M,g)(−LξM f )[g̃] .

Diffeomorphism invariance is the statement that ~ξΦ = 0.

Example:
∫

R[g̃]f d vol(M,g̃) is diffeomorphism invariant, but∫
R[g̃]f d vol(M,g) is not.
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Physical interpretation

Let us fix M. A test tensor f ∈ Tensc(M) corresponds to a
concrete geometrical setting of an experiment, so for each
M ∈ Obj(Loc), we obtain a functional Φ(f ), which depends
covariantly on the geometrical data provided by f .

Given f ∈ Tensc(M) we recover not only the functional ΦM(f ),
but also the whole diffeomorphism class of functionals
ΦM(α∗f ), where α ∈ Diffc(M).
We allow arbitrary tensors to be test objects, because we don’t
want to restrict a’priori possible experimental settings.

New insight
Classical (or quantum) fields generate physical quantities, but a
concrete observable quantity is obtained by evaluation on a test
tensor. New concept: evaluated fields.
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Evaluation of fields

In our formalism, the full information about the dependence of a
measurement on the geometrical setup should be contained in the
family (α∗f )α∈Diffc(M).

Therefore, for a fixed M and Φ, a physically meaningful object is
the function Φf : Diffc(M) 3 α 7→ ΦM(α∗f ).

Let F denote the subspace of C∞(Diffc(M),F(M)) generated by
elements of the form Φf with respect to the pointwise product.

This notion of observables corresponds to partial (relative)
observables of Rovelli, Dittrich and Thiemann.
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BV complex

A general method to quantize theories with local symmetries is
the so called Batalin-Vilkovisky (BV) formalism. Here we
present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

The space of on-shell functionals is a quotient of F by the ideal
generated by S′M(g̃) and can be described as a homology of the
Koszul-Tate complex.
The space of invariants under a Lie algebra action can be seen as
the 0 cohomology of the Chevalley-Eilenberg comlex.
We can combine the Koszul-Tate complex and the
Chevalley-Eilenberg comlex to a BV (Batalin-Vilkovisky)
bicomplex, whose 0th cohomology characterizes Finv

S (the space
of gauge-invariant, on-shel evaluated fields).
The underlying algebra of the BV complex is a graded algebra
denoted by BV.
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BV is geometrically interpreted as a subalgebra of the space of
smooth functions on Diffc(M) with values in multivector fields
on some graded manifold E(M). We can equip the space of
multivector fields with the Schouten bracket:

{X,F} = ∂XF for X a vector field and F function,
{X,Y} = [X,Y] for X,Y a vector fields,
graded Leibniz rule.

This induces a graded Poisson bracket {., .} on BV. The
BV-differential on BV is given by:
(sΦ)M(f ) = {ΦM(f ), S + γ}+ ΦM(LC f ),
where C ∈ X(M) is the ghost and γ is the Chevalley-Eilenberg
differential, which acts on BV via infinitesimal diffeomorphism
transformations along the ghost fields C.

Gauge invariant observables are given by: F inv
S := H0(s,BV).
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Gauge fixing

Gauge fixing is implemented by means of the so called gauge
fixing fermion Ψf ∈ BV with ghost number #gh = 1.

We define an automorphism of BV by

αΨ(X) :=

∞∑
n=0

1
n!
{Ψf , . . . , {Ψf︸ ︷︷ ︸

n

,X} . . . } ,

where f ≡ 1 on the support of X.

We obtain a new extended action S̃ .
= αΨ(S + γ) and

gauge-fixed BV differential sΨ = αΨ ◦ s ◦ α−1
Ψ

Note that H0(sΨ, αΨ(BV)) = H0(s,BV) = Finv
S .
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Equations of motion and Poisson bracket

As an output of classical field theory we have a graded manifold
E(M) and an extended action S̃. Now we apply to this data the
deformation quantization.

We can Taylor expand the gauge fixed action around an arbitrary
background metric g and obtain S̃ = S0

g + Vg, where Sg
0 is at

most quadratic in fields and has #af = 0.

For each globally hyperbolic background g, we have the retarded
and advanced Green’s functions ∆

R/A
g for the EOM’s derived

from S0
g.

Using this input, we define the free Poisson bracket on BV

{F,G}g
0
.
=
〈

F(1),∆gG(1)
〉

∆g = ∆R
g −∆A

g ,
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Deformation quantization

We start with the deformation quantization of (BV, {., .}0).

We need to include into the space of functionals on E(M) some
more singular objects. The right notion of regularity is related to
a certain wavefront set property of Hadamard 2-point functions
(microlocal spectrum condition, µSC). The resulting space will
be denoted by BVµc.
The deformation quantization of (BVµc, {., .}g

0) can be
performed in the standard way, by introducing a ?-product:

(F ?H G)
.
= m ◦ exp(~ΓωH )(F ⊗ G) ,

where ΓωH

.
=

∫
dx dyωH(x, y)

δ

δϕ(x)
⊗ δ

δϕ(y)
and

ωH =
i
2

∆g + H is the Hadamard 2-point function (satisfies the
linearized EOM’s in both arguments and the µSC).
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Deformation quantization

For a fixed M we have a family of algebras
AH(M) = (BVµc[[~, λ]], ?H), numbered by possible choices of
H. We can define A(M) to be an algebra consisting of families

(FH), such that FH = e
~
2 Γ′

H−H′FH′ , where

Γ′H−H′
.
=

∫
dx dy(H − H′)(x, y)

δ2

δϕ(x)δϕ(y)
and the star

product is given by

(F ? G)H
.
= FH ?H GH .

This leads to a deformation quantization (A(M), ?) of the space
of evaluated fields.
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Interaction

In the next step we have to introduce the interaction, i.e. consider
the algebras AH(M) = (BVµc[[~, λ]], ?H) and define on them the
renormalized time-ordered products ·T H by the Epstein-Glaser
method.

Products ·T H induce a product ·T on A(M). The formal S-matrix
is given by: S(Vg)

.
= eVg

T .

Interacting fields are obtained from free ones by the Bogoliubov
formula:

(RV(Φ))M(f )
.
=

d
dt

∣∣∣
t=0

S(Vg)?−1 ? S(Vg + tΦM(f )) .
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Quantum observables

In the framework of [K. Fredenhagen, K.R., CMP 2013], the S-matrix
has to satisfy the so called quantum master equation (QME):

{eVg

T , S0
g} = 0 .

With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP

2008], this condition can be rewritten as
1
2
{S0

g + Vg, S0
g + Vg} = i~4Vg ,

where4Vg is the anomaly.
If the QME holds, then gauge invariant quantum observables are
recovered as the 0th cohomology of the quantum BV operator
ŝ .

= R−1
V ◦ {., S0} ◦ RV . Equivalently,

ŝΦM(f ) = {., S0
g + Vg}+ ΦM(LCf )− i~4Vg (ΦM(f )) .
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ŝΦM(f ) = {., S0
g + Vg}+ ΦM(LCf )− i~4Vg (ΦM(f )) .

Katarzyna Rejzner Quantum Gravity 20 / 25



Introduction
General relativity: classical theory

Quantization

Deformation quantization
Background independence

Quantum observables

In the framework of [K. Fredenhagen, K.R., CMP 2013], the S-matrix
has to satisfy the so called quantum master equation (QME):

{eVg

T , S0
g} = 0 .

With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP

2008], this condition can be rewritten as
1
2
{S0

g + Vg, S0
g + Vg} = i~4Vg ,

where4Vg is the anomaly.
If the QME holds, then gauge invariant quantum observables are
recovered as the 0th cohomology of the quantum BV operator
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Relative Cauchy evolution

Let N+ and N− be two spacetimes
that embed into two other
spacetimes M1 and M2 around
Cauchy surfaces, via causal
embeddings given by χk,±, k = 1, 2.

Then β = αχ1+α
−1
χ2+

αχ2−α
−1
χ1− is an

automorphism of A(M1).

It depends only on the spacetime
between the two Cauchy surfaces

M1 M2

N+

N−

χ1+ χ2+

χ1− χ2−
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Background independence

Let M1 = (M, g1) and M2 = (M, g2),
where (g1)µν and (g2)µν differ by a
(compactly supported) symmetric tensor
hµν with
supp(h) ∩ J+(N+) ∩ J−(N−) = ∅,

Θµν(x)
.
=

δβh

δhµν(x)

∣∣∣
h=0

is a derivation

valued distribution which is covariantly
conserved.

The infinitesimal version of the
background independence is condition
reads: Θµν = 0.

(M, g1) (M, g2)

N+

N−

supp(h)

χ1+ χ2+

χ1− χ2−
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Background independence

Theorem [Brunetti, Fredenhagen, K.R. 2013]
The functional derivative Θµν of the relative Cauchy evolution can be
expressed as

Θµν(ΦM1(f ))
o.s.
= [RV1(ΦM1(f )),RV1(Tµν)]? ,

where Tµν is the stress-energy tensor of the extended action and one
can define the time-ordered products in such a way that Tµν = 0
holds, so the interacting theory is background independent.
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Appendix

Conclusions

We have constructed a consistent model of perturbative quantum
gravity within the framework of locally covariant quantum fields
theory.

In our framework, physical diffeomorphism invariant quantities
are constructed as natural transformations between certain
functors. We have proposed a quantization prescription for such
objects, which makes use of the BV formalism.

To quantize the theory, we make a tentative split into a free and
interacting theory. We quantize the free theory first and then use
the Epstein-Glaser renormalization to introduce the interaction.

We have shown, using the relative Cauchy evolution, that our
theory is background independent, i.e. independent of the split
into free and interacting part.
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Appendix

Thank you for your attention!

Katarzyna Rejzner Quantum Gravity 25 / 25


	Introduction
	Outline of the program
	Local covariance

	General relativity: classical theory
	Basic structures
	BV complex

	Quantization
	Deformation quantization
	Background independence

	Appendix

