Interplay between Gravity and Quantum Physics from the Point of View of General Local Covariance

Katarzyna Rejzner

INdAM (Marie Curie) fellow University of Rome Tor Vergata

Rome, 11.07.2013

Outline of the talk

Introduction

- Outline of the program
- Local covariance

2 General relativity: classical theory

- Basic structures
- BV complex

3 Quantization

- Deformation quantization
- Background independence

Outline of the program Local covariance

This talk is based on:

• R. Brunetti, K. Fredenhagen, K. R., *Quantum gravity from the point of view of locally covariant quantum field theory*, [arXiv:math-ph/1306.1058] Introduction

Outline Local c

This talk is based on:

- R. Brunetti, K. Fredenhagen, K. R., *Quantum gravity from the point of* view of locally covariant quantum field theory, [arXiv:math-ph/1306.1058]
- ... dedicated to Roberto Longo on the occasion of his 60th Birthday.

Quantum Gravity

Introduction

eneral relativity: classical theory Quantization Outline of the program Local covariance

This talk is based on:

- R. Brunetti, K. Fredenhagen, K. R., *Quantum gravity from the point of* view of locally covariant quantum field theory, [arXiv:math-ph/1306.1058]
- ... dedicated to Roberto Longo on the occasion of his 60th Birthday.
- Tanti Auguri Roberto!

Quantum Gravity

Outline of the program Local covariance

A new way to quantum gravity?

Outline of the progran Local covariance

A new way to quantum gravity?

Our results:

Outline of the program Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

Outline of the program Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

Outline of the prograr Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

The road ahead of us:

Outline of the program Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

The road ahead of us:

• Answer some interpretational questions.

Outline of the prograr Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

The road ahead of us:

- Answer some interpretational questions.
- Find a relation to experiment: QG corrections to some processes, black hole radiation, cosmology.

Outline of the prograr Local covariance

A new way to quantum gravity?

Our results:

- We have formulated perturbative quantum gravity as an effective theory that is valid in given physical situations.
- We proposed a notion of gauge invariant physical quantities of GR and gave a prescription how to quantize such objects.

The road ahead of us:

- Answer some interpretational questions.
- Find a relation to experiment: QG corrections to some processes, black hole radiation, cosmology.
- Understand the small scale structure of spacetime: relation to NCG.

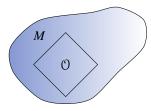
Outline of the program Local covariance

Intuitive idea

• In experiment, geometric structure is probed by local observations. We have the following data:

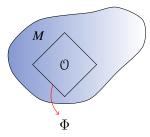
Outline of the program Local covariance

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region () of spacetime where the measurement is performed,



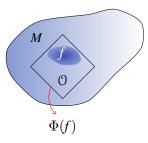
Outline of the program Local covariance

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region () of spacetime where the measurement is performed,
 - An observable Φ , which we measure,



Outline of the program Local covariance

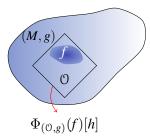
- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region () of spacetime where the measurement is performed,
 - An observable Φ , which we measure,
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: Φ(f) = ∫ f(x)R(x), supp(f) ⊂ 0.



Outline of the program Local covariance

Intuitive idea

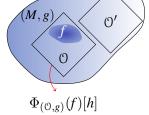
- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region () of spacetime where the measurement is performed,
 - An observable Φ , which we measure,
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: Φ(f) = ∫ f(x)R(x), supp(f) ⊂ O.



• We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.

Outline of the program Local covariance

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region () of spacetime where the measurement is performed,
 - An observable Φ , which we measure,
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: Φ(f) = ∫ f(x)R(x), supp(f) ⊂ O.

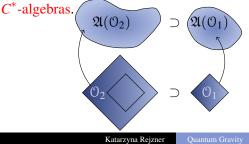


- We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.
- Diffeomorphism transformation: move our experimental setup to a different region 0'.

• A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.

- A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.
- It started as the axiomatic framework of Haag-Kastler: a model is defined by associating to each region 0 of Minkowski spacetime an algebra A(0) of observables (a unital C*-algebra) that can be measured in 0.

- A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.
- It started as the axiomatic framework of Haag-Kastler: a model is defined by associating to each region 0 of Minkowski spacetime an algebra A(0) of observables (a unital C*-algebra) that can be measured in 0.
- The physical notion of subsystems is realized by the condition of isotony, i.e.: $\mathcal{O}_1 \subset \mathcal{O}_2 \Rightarrow \mathfrak{A}(\mathcal{O}_1) \subset \mathfrak{A}(\mathcal{O}_2)$. We obtain a net of



- A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.
- It started as the axiomatic framework of Haag-Kastler: a model is defined by associating to each region 0 of Minkowski spacetime an algebra A(0) of observables (a unital C*-algebra) that can be measured in 0.
- The physical notion of subsystems is realized by the condition of isotony, i.e.: O₁ ⊂ O₂ ⇒ A(O₁) ⊂ A(O₂). We obtain a net of C*-algebras.
- Mathematicaly, AQFT makes use of functional analysis techniques (operator algebras), but its various generalizations involve many other branches of mathematics.

Dutline of the progran Local covariance

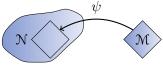
Locally covariant quantum field theory

• To include effects of general relativity in QFT one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of the Haag-Kastler framework is called locally covariant quantum field theory and it uses the language of category theory.

Dutline of the progran Local covariance

Locally covariant quantum field theory

- To include effects of general relativity in QFT one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of the Haag-Kastler framework is called locally covariant quantum field theory and it uses the language of category theory.
- The category Loc, has globally hyperbolic spacetimes M ≐ (M, g) as objects and its morphisms are isometric, orientations preserving, causal embeddings ψ : M → N.

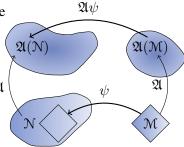


Dutline of the program Local covariance

Locally covariant quantum field theory

- To include effects of general relativity in QFT one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of the Haag-Kastler framework is called locally covariant quantum field theory and it uses the language of category theory.
- The category Loc, has globally hyperbolic spacetimes M ≐ (M, g) as objects and its morphisms are isometric, orientations preserving, causal embeddings ψ : M → N.
- A model in LCQFT is defined by giving a functor \mathfrak{A} from the category of spacetimes to the category **Obs** of observables (for example the category of *C**-algebras).

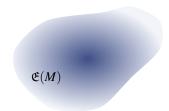
Katarzvna Reizner



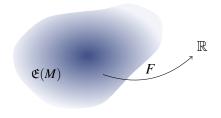
Basic structures BV complex

Kinematical structure

 The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, €(M) = Γ((T*M)^{⊗2}).



- The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, 𝔅(𝔅) = Γ((*T***M*)^{⊗2}).
- Observables: smooth compactly supported multilocal functionals on 𝔅(𝔅). We denote this space by 𝔅(𝔅). 𝔅 is a functor from Loc to Vec (the category of locally convex top. vector spaces).



- The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, 𝔅(𝔅) = Γ((*T***M*)^{⊗2}).
- Observables: smooth compactly supported multilocal functionals on E(M). We denote this space by F(M). F is a functor from Loc to Vec (the category of locally convex top. vector spaces).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.

- The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, 𝔅(𝔅) = Γ((*T***M*)^{⊗2}).
- Observables: smooth compactly supported multilocal functionals on E(M). We denote this space by F(M). F is a functor from Loc to Vec (the category of locally convex top. vector spaces).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
- In general relativity we have the Einstein-Hilbert Lagrangian $L_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \,\mathrm{d} \operatorname{vol}_{(M,\tilde{g})}, \quad \tilde{g} = g + h.$

- The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, 𝔅(𝔅) = Γ((*T***M*)^{⊗2}).
- Observables: smooth compactly supported multilocal functionals on E(M). We denote this space by F(M). F is a functor from Loc to Vec (the category of locally convex top. vector spaces).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
- In general relativity we have the Einstein-Hilbert Lagrangian $L_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \,\mathrm{d} \operatorname{vol}_{(M,\tilde{g})}, \quad \tilde{g} = g + h.$
- We need the cutoff function f because M is not compact. The space of such test functions is denoted by $\mathfrak{D}(\mathcal{M})$.

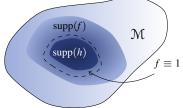
- The configuration space (physical quantities we want to measure): space of smooth contravariant rank 2 tensors on *M*, 𝔅(𝔅) = Γ((*T***M*)^{⊗2}).
- Observables: smooth compactly supported multilocal functionals on E(M). We denote this space by F(M). F is a functor from Loc to Vec (the category of locally convex top. vector spaces).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
- In general relativity we have the Einstein-Hilbert Lagrangian $L_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \,\mathrm{d} \operatorname{vol}_{(M,\tilde{g})}, \quad \tilde{g} = g + h.$
- We need the cutoff function f because M is not compact. The space of such test functions is denoted by $\mathfrak{D}(\mathcal{M})$.
- The action S(L) is an equivalence class of Lagrangians, where $L_1 \sim L_2$ if $\operatorname{supp}(L_{1,\mathcal{M}} L_{2,\mathcal{M}})(f) \subset \operatorname{supp} df \ \forall f \in \mathfrak{D}(\mathcal{M}).$

Basic structures BV complex

Dynamics and symmetries

• The Euler-Lagrange derivative of *S* is defined by

 $\langle S'_{\mathcal{M}}(\tilde{g}), h \rangle = \langle S_{\mathcal{M}}(f)^{(1)}(\tilde{g}), h \rangle$, where $f \equiv 1$ on supph.



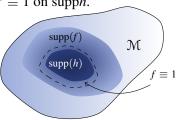
Basic structures BV complex

Dynamics and symmetries

• The Euler-Lagrange derivative of *S* is defined by

 $\langle S'_{\mathfrak{M}}(\tilde{g}), h \rangle = \langle S_{\mathfrak{M}}(f)^{(1)}(\tilde{g}), h \rangle$, where $f \equiv 1$ on supph.

• Abstractly, $S'_{\mathcal{M}}$ is a 1-form on $\mathfrak{E}(\mathcal{M})$. The field equation is: $S'_{\mathcal{M}}(\tilde{g}) = 0$.



Basic structures BV complex

supp(

supp(X)

Dynamics and symmetries

• The Euler-Lagrange derivative of *S* is defined by

 $\langle S'_{\mathcal{M}}(\tilde{g}), h \rangle = \langle S_{\mathcal{M}}(f)^{(1)}(\tilde{g}), h \rangle$, where $f \equiv 1$ on supph.

- Abstractly, S'_M is a 1-form on 𝔅(𝓜). The field equation is: S'_M(ğ) = 0.
- A symmetry of S is a vector field on 𝔅(𝔅), X ∈ 𝔅(𝔅) that characterizes the direction in which S is locally constant, i.e. ∀φ ∈ 𝔅(𝔅): ⟨S'_𝔅(𝔅), X(𝔅)⟩ = 0.

 \mathcal{M}

 $f \equiv 1$

Basic structures BV complex

supp()

supp(X)

Dynamics and symmetries

• The Euler-Lagrange derivative of *S* is defined by

 $\langle S'_{\mathfrak{M}}(\tilde{g}), h \rangle = \langle S_{\mathfrak{M}}(f)^{(1)}(\tilde{g}), h \rangle$, where $f \equiv 1$ on supph.

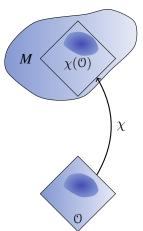
- Abstractly, $S'_{\mathcal{M}}$ is a 1-form on $\mathfrak{E}(\mathcal{M})$. The field equation is: $S'_{\mathcal{M}}(\tilde{g}) = 0$.
- A symmetry of S is a vector field on 𝔅(𝔅), X ∈ 𝔅(𝔅) that characterizes the direction in which S is locally constant, i.e. ∀φ ∈ 𝔅(𝔅): ⟨S'_𝔅(𝔅), X(𝔅)⟩ = 0.
- Let $\mathfrak{E}_{S}(\mathcal{M})$ denote the space of solutions to field equations. We want to characterise the space of functionals on $\mathfrak{E}_{S}(\mathcal{M})$ which are invariant under all the local symmetries of *S*: invariant on-shell functionals $\mathfrak{F}_{S}^{inv}(\mathcal{M})$.

M

 $f \equiv 1$

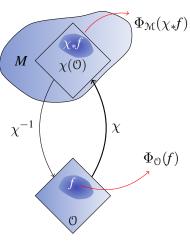
Fields as natural transformations

In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. Let Φ ∈ Nat(𝔅, 𝔅) (both 𝔅 and 𝔅 are treated as functors into Vec).



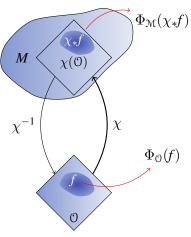
Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. Let Φ ∈ Nat(𝔅, 𝔅) (both 𝔅 and 𝔅 are treated as functors into Vec).
- The condition for Φ to be a natural transformation: Φ₀(f)[χ*h] = Φ_M(χ*f)[h].



Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. Let Φ ∈ Nat(𝔅, 𝔅) (both 𝔅 and 𝔅 are treated as functors into Vec).
- The condition for Φ to be a natural transformation: Φ₀(f)[χ*h] = Φ_M(χ*f)[h].
- In classical gravity we understand physical quantities not as pointwise objects but rather as something defined on all the spacetimes in a coherent way.



 For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc}), ξ_M ∈ Γ_c(TM).

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc}), ξ_M ∈ Γ_c(TM).
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc}), ξ_M ∈ Γ_c(TM).
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M}^{-1} f)[\alpha_{M}^{*}\tilde{g}].$

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc)}, ξ_M ∈ Γ_c(TM).
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M}^{-1} f)[\alpha_{M}^{*}\tilde{g}].$
- The derived action reads:

 $(\xi\Phi)_{(M,g)}(f)[\tilde{g}] =$

 $\left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \pounds_{\xi_M} \tilde{g} \right\rangle + \Phi_{(M,g)}(\pounds_{\xi_M} f)[\tilde{g}].$

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc)}, ξ_M ∈ Γ_c(TM).
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_M^{-1} f)[\alpha_M^* \tilde{g}].$
- The derived action reads:

 $(\xi\Phi)_{(M,g)}(f)[\tilde{g}] =$

 $\left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \pounds_{\xi_M} \tilde{g} \right\rangle + \Phi_{(M,g)}(\pounds_{\xi_M} f)[\tilde{g}].$

• Diffeomorphism invariance is the statement that $\vec{\xi}\Phi = 0$.

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of Γ_c(TM). Let us choose a sequence *ξ* = (ξ_M)_{M∈Obj(Loc)}, ξ_M ∈ Γ_c(TM).
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_M^{-1} f)[\alpha_M^* \tilde{g}].$
- The derived action reads:

 $(\xi\Phi)_{(M,g)}(f)[\tilde{g}] =$

 $\left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \pounds_{\xi_M} \tilde{g} \right\rangle + \Phi_{(M,g)}(\pounds_{\xi_M} f)[\tilde{g}].$

- Diffeomorphism invariance is the statement that $\vec{\xi}\Phi = 0$.
- Example: $\int R[\tilde{g}]f \,\mathrm{d}\,\mathrm{vol}_{(M,\tilde{g})}$ is diffeomorphism invariant, but $\int R[\tilde{g}]f \,\mathrm{d}\,\mathrm{vol}_{(M,g)}$ is not.

Basic structures BV complex

Physical interpretation

Let us fix M. A test tensor f ∈ 𝔅en𝔅_c(𝓜) corresponds to a concrete geometrical setting of an experiment, so for each 𝓜 ∈ Obj(Loc), we obtain a functional Φ(f), which depends covariantly on the geometrical data provided by f.

Physical interpretation

- Let us fix M. A test tensor f ∈ 𝔅en𝔅_c(𝔅) corresponds to a concrete geometrical setting of an experiment, so for each 𝔅 ∈ Obj(Loc), we obtain a functional Φ(f), which depends covariantly on the geometrical data provided by f.
- Given f ∈ 𝔅en𝔅_c(𝔅) we recover not only the functional Φ_𝔅(f), but also the whole diffeomorphism class of functionals Φ_𝔅(α_{*}f), where α ∈ Diff_c(𝔅).

Physical interpretation

- Let us fix M. A test tensor f ∈ 𝔅en𝔅_c(𝔅) corresponds to a concrete geometrical setting of an experiment, so for each 𝔅 ∈ Obj(Loc), we obtain a functional Φ(f), which depends covariantly on the geometrical data provided by f.
- Given f ∈ 𝔅en𝔅_c(𝔅) we recover not only the functional Φ_𝔅(f), but also the whole diffeomorphism class of functionals Φ_𝔅(α_{*}f), where α ∈ Diff_c(𝔅).
- We allow arbitrary tensors to be test objects, because we don't want to restrict a'priori possible experimental settings.

Physical interpretation

- Let us fix M. A test tensor f ∈ 𝔅en𝔅_c(𝓜) corresponds to a concrete geometrical setting of an experiment, so for each 𝓜 ∈ Obj(Loc), we obtain a functional Φ(f), which depends covariantly on the geometrical data provided by f.
- Given f ∈ 𝔅en𝔅_c(𝔅) we recover not only the functional Φ_𝔅(f), but also the whole diffeomorphism class of functionals Φ_𝔅(α_{*}f), where α ∈ Diff_c(𝔅).
- We allow arbitrary tensors to be test objects, because we don't want to restrict a'priori possible experimental settings.

New insight

Classical (or quantum) fields generate physical quantities, but a concrete observable quantity is obtained by evaluation on a test tensor. New concept: evaluated fields.

Basic structures BV complex

Evaluation of fields

In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family (α_{*}f)_{α∈Diff_c(M)}.

Evaluation of fields

- In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family (α_{*}f)_{α∈Diff_c(M)}.
- Therefore, for a fixed M and Φ, a physically meaningful object is the function Φ_f : Diff_c(M) ∋ α ↦ Φ_M(α_{*}f).

Evaluation of fields

- In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family (α_{*}f)_{α∈Diff_c(M)}.
- Therefore, for a fixed \mathcal{M} and Φ , a physically meaningful object is the function $\Phi_f : \text{Diff}_c(\mathcal{M}) \ni \alpha \mapsto \Phi_{\mathcal{M}}(\alpha_* f)$.
- Let \mathcal{F} denote the subspace of $\mathcal{C}^{\infty}(\text{Diff}_{c}(\mathcal{M}), \mathfrak{F}(\mathcal{M}))$ generated by elements of the form Φ_{f} with respect to the pointwise product.

Evaluation of fields

- In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family (α_{*}f)_{α∈Diff_c(M)}.
- Therefore, for a fixed M and Φ, a physically meaningful object is the function Φ_f : Diff_c(M) ∋ α ↦ Φ_M(α_{*}f).
- Let \mathcal{F} denote the subspace of $\mathcal{C}^{\infty}(\text{Diff}_{c}(\mathcal{M}), \mathfrak{F}(\mathcal{M}))$ generated by elements of the form Φ_{f} with respect to the pointwise product.
- This notion of observables corresponds to partial (relative) observables of Rovelli, Dittrich and Thiemann.

Basic structures BV complex

BV complex

• A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Basic structures BV complex

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathcal{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathcal{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathcal{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.
- We can combine the Koszul-Tate complex and the Chevalley-Eilenberg comlex to a BV (Batalin-Vilkovisky) bicomplex, whose 0th cohomology characterizes \mathcal{F}_{S}^{inv} (the space of gauge-invariant, on-shel evaluated fields).

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathcal{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.
- We can combine the Koszul-Tate complex and the Chevalley-Eilenberg comlex to a BV (Batalin-Vilkovisky) bicomplex, whose 0th cohomology characterizes \mathcal{F}_{S}^{inv} (the space of gauge-invariant, on-shel evaluated fields).
- The underlying algebra of the BV complex is a graded algebra denoted by \mathcal{BV} .

Basic structures BV complex

BV complex

BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:

Basic structures BV complex

- BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,

Basic structures BV complex

- BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,

Basic structures BV complex

- BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
 - graded Leibniz rule.

Basic structures BV complex

BV complex

- BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
 - graded Leibniz rule.
- This induces a graded Poisson bracket {.,.} on \mathcal{BV} . The BV-differential on \mathcal{BV} is given by:

 $(s\Phi)_{\mathcal{M}}(f) = \{\Phi_{\mathcal{M}}(f), S + \gamma\} + \Phi_{\mathcal{M}}(\pounds_C f),$

where $C \in \mathfrak{X}(M)$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on \mathcal{BV} via infinitesimal diffeomorphism transformations along the ghost fields *C*.

Basic structures BV complex

BV complex

- BV is geometrically interpreted as a subalgebra of the space of smooth functions on Diff_c(M) with values in multivector fields on some graded manifold e(M). We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
 - graded Leibniz rule.
- This induces a graded Poisson bracket {.,.} on \mathcal{BV} . The BV-differential on \mathcal{BV} is given by:

 $(s\Phi)_{\mathcal{M}}(f) = \{\Phi_{\mathcal{M}}(f), S + \gamma\} + \Phi_{\mathcal{M}}(\mathcal{L}_{C}f),$

where $C \in \mathfrak{X}(M)$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on \mathcal{BV} via infinitesimal diffeomorphism transformations along the ghost fields *C*.

• Gauge invariant observables are given by: $\mathcal{F}_{S}^{\text{inv}} := H^{0}(s, \mathcal{BV}).$

Basic structures BV complex

Gauge fixing

 Gauge fixing is implemented by means of the so called gauge fixing fermion Ψ_f ∈ BV with ghost number #gh = 1.

Basic structures BV complex

Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion Ψ_f ∈ BV with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of *X*.

Basic structures BV complex

Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion Ψ_f ∈ BV with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of *X*.

• We obtain a new extended action $\tilde{S} \doteq \alpha_{\Psi}(S + \gamma)$ and gauge-fixed BV differential $s^{\Psi} = \alpha_{\Psi} \circ s \circ \alpha_{\Psi}^{-1}$

Basic structures BV complex

Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion Ψ_f ∈ BV with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of *X*.

- We obtain a new extended action $\tilde{S} \doteq \alpha_{\Psi}(S + \gamma)$ and gauge-fixed BV differential $s^{\Psi} = \alpha_{\Psi} \circ s \circ \alpha_{\Psi}^{-1}$
- Note that $H^0(s^{\Psi}, \alpha_{\Psi}(\mathcal{BV})) = H^0(s, \mathcal{BV}) = \mathcal{F}_S^{\text{inv}}$.

 As an output of classical field theory we have a graded manifold C(M) and an extended action S. Now we apply to this data the deformation quantization.

- As an output of classical field theory we have a graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$ and an extended action \tilde{S} . Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0{}^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.

- As an output of classical field theory we have a graded manifold *Ē*(𝔅) and an extended action *Š*. Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.
- For each globally hyperbolic background g, we have the retarded and advanced Green's functions $\Delta_g^{R/A}$ for the EOM's derived from S_0^g .

- As an output of classical field theory we have a graded manifold *Ē*(𝔅) and an extended action *Š*. Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0{}^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.
- For each globally hyperbolic background g, we have the retarded and advanced Green's functions $\Delta_g^{R/A}$ for the EOM's derived from S_0^g .
- Using this input, we define the free Poisson bracket on \mathcal{BV}

$$\{F,G\}_0^g \doteq \left\langle F^{(1)}, \Delta_g G^{(1)} \right\rangle \qquad \Delta_g = \Delta_g^R - \Delta_g^A,$$

• We start with the deformation quantization of $(\mathcal{BV}, \{., .\}_0)$.

- We start with the deformation quantization of $(\mathcal{BV}, \{.,.\}_0)$.

- We start with the deformation quantization of $(\mathcal{BV}, \{.,.\}_0)$.
- The deformation quantization of (BV_{μc}, {.,.}^g) can be performed in the standard way, by introducing a *-product:

$$(F \star_H G) \doteq m \circ \exp(\hbar\Gamma_{\omega_H})(F \otimes G) ,$$

where $\Gamma_{\omega_H} \doteq \int dx \, dy \omega_H(x, y) \frac{\delta}{\delta\varphi(x)} \otimes \frac{\delta}{\delta\varphi(y)}$ and
 $\omega_H = \frac{i}{2}\Delta_g + H$ is the Hadamard 2-point function (satisfies the
linearized EOM's in both arguments and the μ SC).

• For a fixed \mathcal{M} we have a family of algebras $\mathfrak{A}_{H}(\mathcal{M}) = (\mathcal{BV}_{\mu c}[[\hbar, \lambda]], \star_{H})$, numbered by possible choices of H. We can define $\mathfrak{A}(\mathcal{M})$ to be an algebra consisting of families (F_{H}) , such that $F_{H} = e^{\frac{\hbar}{2}\Gamma'_{H-H'}}F_{H'}$, where $\Gamma'_{H-H'} \doteq \int dx \, dy (H - H')(x, y) \frac{\delta^{2}}{\delta \varphi(x) \delta \varphi(y)}$ and the star product is given by

$$(F \star G)_H \doteq F_H \star_H G_H$$
.

• For a fixed \mathcal{M} we have a family of algebras $\mathfrak{A}_{H}(\mathcal{M}) = (\mathcal{BV}_{\mu c}[[\hbar, \lambda]], \star_{H})$, numbered by possible choices of H. We can define $\mathfrak{A}(\mathcal{M})$ to be an algebra consisting of families (F_{H}) , such that $F_{H} = e^{\frac{\hbar}{2}\Gamma'_{H-H'}}F_{H'}$, where $\Gamma'_{H-H'} \doteq \int dx \, dy (H - H')(x, y) \frac{\delta^{2}}{\delta \varphi(x) \delta \varphi(y)}$ and the star product is given by

$$(F \star G)_H \doteq F_H \star_H G_H \,.$$

This leads to a deformation quantization (𝔅(𝔅), ⋆) of the space of evaluated fields.

Introduction General relativity: classical theory Quantization Deformation qu Background inc

Interaction

 In the next step we have to introduce the interaction, i.e. consider the algebras 𝔄_H(𝔅) = (𝔅𝒱_{μc}[[ħ, λ]], ⋆_H) and define on them the renormalized time-ordered products ·_{𝔅H} by the Epstein-Glaser method.

Interaction

- In the next step we have to introduce the interaction, i.e. consider the algebras 𝔄_H(𝔅) = (𝔅𝒱_{μc}[[ħ, λ]], ⋆_H) and define on them the renormalized time-ordered products ·_{𝔅H} by the Epstein-Glaser method.
- Products ·_{𝔅H} induce a product ·_𝔅 on 𝔄(𝔅). The formal S-matrix is given by: 𝔅(V^g) ≐ e_𝔅^{V^g}.

Interaction

- In the next step we have to introduce the interaction, i.e. consider the algebras 𝔄_H(𝔅) = (𝔅𝒱_{μc}[[ħ, λ]], ⋆_H) and define on them the renormalized time-ordered products ·_{𝔅H} by the Epstein-Glaser method.
- Products ·_{𝔅H} induce a product ·_𝔅 on 𝔄(𝔅). The formal S-matrix is given by: 𝔅(V^g) ≐ e_𝔅^{V^g}.
- Interacting fields are obtained from free ones by the Bogoliubov formula:

$$(\mathbf{R}_V(\Phi))_{\mathcal{M}}(f) \doteq \frac{d}{dt}\Big|_{t=0} \mathcal{S}(V^g)^{\star-1} \star \mathcal{S}(V^g + t\Phi_{\mathcal{M}}(f)) \,.$$

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the *S*-matrix has to satisfy the so called quantum master equation (QME):

$$\{e_{\mathfrak{T}}^{V^g}, S_0{}^g\} = 0$$
.

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the *S*-matrix has to satisfy the so called quantum master equation (QME):

$$\{e_{\mathfrak{T}}^{V^g}, S_0{}^g\} = 0$$
 .

• With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP 2008], this condition can be rewritten as

$$\frac{1}{2} \{ S_0{}^g + V^g, S_0{}^g + V^g \} = i\hbar \triangle_{V^g} \,,$$

where \triangle_{V^g} is the anomaly.

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the *S*-matrix has to satisfy the so called quantum master equation (QME):

$$\{e_{\mathfrak{T}}^{V^g}, S_0{}^g\} = 0$$
 .

• With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP 2008], this condition can be rewritten as

$$\frac{1}{2}\{S_0{}^g + V^g, S_0{}^g + V^g\} = i\hbar \triangle_{V^g},$$

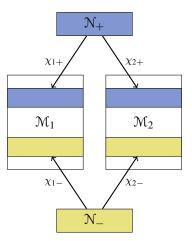
where \triangle_{V^g} is the anomaly.

• If the QME holds, then gauge invariant quantum observables are recovered as the 0th cohomology of the quantum BV operator $\hat{s} \doteq R_V^{-1} \circ \{., S_0\} \circ R_V$. Equivalently,

$$\hat{s}\Phi_{\mathcal{M}}(f) = \{., S_0{}^g + V^g\} + \Phi_{\mathcal{M}}(\mathcal{L}_C f) - i\hbar \bigtriangleup_{V^g} (\Phi_{\mathcal{M}}(f)) \,.$$

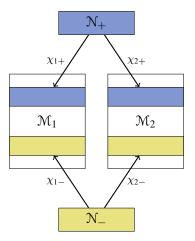
Relative Cauchy evolution

 Let N₊ and N₋ be two spacetimes that embed into two other spacetimes M₁ and M₂ around Cauchy surfaces, via causal embeddings given by χ_{k,±}, k = 1, 2.



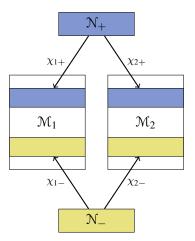
Relative Cauchy evolution

- Let N₊ and N₋ be two spacetimes that embed into two other spacetimes M₁ and M₂ around Cauchy surfaces, via causal embeddings given by χ_{k,±}, k = 1, 2.
- Then $\beta = \alpha_{\chi_{1+}} \alpha_{\chi_{2+}}^{-1} \alpha_{\chi_{2-}} \alpha_{\chi_{1-}}^{-1}$ is an automorphism of $\mathfrak{A}(\mathfrak{M}_1)$.



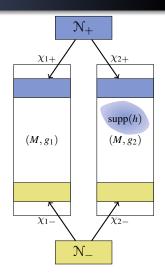
Relative Cauchy evolution

- Let N₊ and N₋ be two spacetimes that embed into two other spacetimes M₁ and M₂ around Cauchy surfaces, via causal embeddings given by χ_{k,±}, k = 1, 2.
- Then $\beta = \alpha_{\chi_{1+}} \alpha_{\chi_{2+}}^{-1} \alpha_{\chi_{2-}} \alpha_{\chi_{1-}}^{-1}$ is an automorphism of $\mathfrak{A}(\mathcal{M}_1)$.
- It depends only on the spacetime between the two Cauchy surfaces



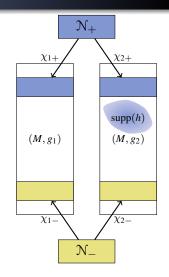
Background independence

• Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\operatorname{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,



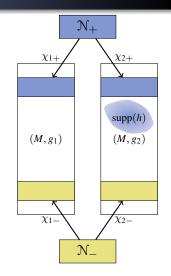
Background independence

- Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\operatorname{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,
- $\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$ is a derivation valued distribution which is covariantly conserved.



Background independence

- Let M₁ = (M, g₁) and M₂ = (M, g₂), where (g₁)_{µν} and (g₂)_{µν} differ by a (compactly supported) symmetric tensor h_{µν} with supp(h) ∩ J⁺(N₊) ∩ J⁻(N_−) = Ø,
- $\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$ is a derivation valued distribution which is covariantly conserved.
- The infinitesimal version of the background independence is condition reads: Θ_{µν} = 0.



Background independence

Theorem [Brunetti, Fredenhagen, K.R. 2013]

The functional derivative $\Theta_{\mu\nu}$ of the relative Cauchy evolution can be expressed as

$$\Theta_{\mu\nu}(\Phi_{\mathcal{M}_1}(f)) \stackrel{o.s.}{=} [R_{V_1}(\Phi_{\mathcal{M}_1}(f)), R_{V_1}(T_{\mu\nu})]_{\star},$$

where $T_{\mu\nu}$ is the stress-energy tensor of the extended action and one can define the time-ordered products in such a way that $T_{\mu\nu} = 0$ holds, so the interacting theory is background independent.

Conclusions

• We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.

Appendix

Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.

Appendix

Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.
- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.

Appendix

Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.
- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.
- We have shown, using the relative Cauchy evolution, that our theory is background independent, i.e. independent of the split into free and interacting part.

Thank you for your attention!