

Microscopic Derivation of Ginzburg–Landau Theory

Robert Seiringer IST Austria

Joint work with Rupert Frank, Christian Hainzl, and Jan Philip Solovej J. Amer. Math. Soc. 25 (2012), no. 3, 667–713

Mathematics and Quantum Physics Rome, July 8–12, 2013

Abstract of the talk

- I will discuss how the **Ginzburg–Landau** (GL) model of **superconductivity** arises as an asymptotic limit of the microscopic **Bardeen–Cooper–Schrieffer** (BCS) model.
- The asymptotic limit may be seen as a **semiclassical limit** and one of the main difficulties is to derive a semiclassical expansion with **minimal regularity assumptions**.
- It is not rigorously understood how the BCS model approximates the underlying **many-body quantum system**. I will formulate the BCS model as a variational problem, but only heuristically discuss its relation to quantum mechanics.

SUPERCONDUCTIVITY AND SUPERFLUIDITY

Superconductivity is the phenomenon that certain materials have zero electrical resistance below a **critical temperature**. This is a **quantum phenomenon** on a **macroscopic scale**.

A brief history of superconductivity:

1911 **Onnes** discovers superconductivity experimentally

1950 Ginzburg and Landau provide a phenomenological macroscopic model for superconductivity

1957 **Bardeen**, **Cooper** and **Schrieffer** propose a **microscopic theory** and introduce the concept of **Cooper pairs**

1959 Gor'kov gives a derivation of GL theory from BCS theory

In addition, important contributions from **Bogoliubov**, de Gennes,

The related phenomenon of **superfluidity** concerns fluids with **zero viscosity**. While originally discovered in liquid helium, it is currently being explored in experiments on **ultracold atomic gases**.

The Ginzburg–Landau model

Let $\mathcal{C} \subset \mathbb{R}^3$ be a compact set and let A and W be vector and scalar potentials on \mathcal{C} . Set $\mathcal{E}_D^{\mathrm{GL}}(\psi) = \int_{\mathcal{C}} \Big[B_1 |(-i\nabla + 2A(x))\psi(x)|^2 + B_2 W(x)|\psi(x)|^2 - B_3 D |\psi(x)|^2 + B_4 |\psi(x)|^4 \Big] dx$

Here, $B_1, B_3, B_4 > 0$, $B_2 \in \mathbb{R}$ and $D \in \mathbb{R}$ are coefficients.

Ginzburg–Landau energy $E_D^{\text{GL}} = \inf_{\psi} \mathcal{E}_D^{\text{GL}}(\psi)$

A minimizing ψ describes the macroscopic variations in the **superfluid density**. The normal state corresponds to $\psi \equiv 0$, while $|\psi| > 0$ means superfluidity (or supercond.).

Question: Is the optimal $\psi \equiv 0$ or not?

For us, $C = [0,1]^3$ and ψ satisfies periodic boundary conditions (torus)

One is often interested in minimizing over both ψ and A, adding an additional field energy term. For us, A is **fixed** (but arbitrary).

THE BCS MODEL

State of the system described by a 2×2 operator-valued matrix (op. in $L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$)

$$\Gamma = \left(\begin{array}{cc} \gamma & \alpha \\ \bar{\alpha} & 1 - \bar{\gamma} \end{array}\right) \qquad \text{with} \quad 0 \le \Gamma \le 1$$

Here, $0 \le \gamma \le 1$ is the 1-particle density matrix, and α the **Cooper-pair wavefunction**.

$$\mathcal{F}_T^{\mathrm{BCS}}(\Gamma) := \mathrm{Tr}\left[\left(\left(-ih\nabla + hA(x)\right)^2 - \mu + h^2W(x)\right)\gamma\right] + T\,\mathrm{Tr}\,\Gamma\ln\Gamma + \iint_{\mathcal{C}\times\mathbb{R}^3} V(h^{-1}(x-y))|\alpha(x,y)|^2\,dx\,dy\right]$$

Again $C = [0, 1]^3$, Γ is periodic and Tr stands for the trace per unit volume.

BCS energy $F_T^{BCS} = \inf_{\Gamma} \mathcal{F}_T^{BCS}(\Gamma)$

The normal state corresponds to $\alpha \equiv 0$, while $|\alpha| > 0$ describes Cooper pairs.

Question: Is the optimal $\alpha \equiv 0$ or not?

Remarks about the BCS model

$$\mathcal{F}_T^{\mathrm{BCS}}(\Gamma) = \mathrm{Tr}\left[\left(\left(-ih\nabla + hA(x)\right)^2 - \mu + h^2W(x)\right)\gamma\right] + T\,\mathrm{Tr}\,\Gamma\ln\Gamma + \iint_{\mathcal{C}\times\mathbb{R}^3} V(h^{-1}(x-y))|\alpha(x,y)|^2\,dx\,dy\right]$$

- Can be heuristically derived from a many-body Hamiltonian for spin ¹/₂ fermions with two-body interaction V via two simplifications. First, one restricts to quasi-free states, and second one drops the direct and exchange term in the interaction energy.
- Microscopic data: chemical potential μ , temperature T, interaction potential V
- Macroscopic data: vector magnetic potential A, scalar electric potential W
- What is *h*? It is the ratio of the microscopic and macroscopic scale.
- Technical assumptions: V real-valued, V(x) = V(-x) and $V \in L^{3/2}(\mathbb{R}^3)$ W and A periodic and $\widehat{W}(p)$, $|\widehat{A}(p)|(1+|p|) \in \ell^1$

THE NORMAL STATE

Let us first discuss the non-superfluid case, i.e.,

$$\inf_{0 \le \gamma \le 1} \mathcal{F}_T^{\text{BCS}} \left(\begin{pmatrix} \gamma & 0\\ 0 & 1 - \overline{\gamma} \end{pmatrix} \right) = \inf_{0 \le \gamma \le 1} \left\{ \operatorname{Tr} H\gamma + T \operatorname{Tr} \left(\gamma \ln \gamma + (1 - \gamma) \ln(1 - \gamma) \right) \right\}$$
$$= -T \operatorname{Tr} \ln \left(1 + e^{-H/T} \right)$$

with $H = (-ih\nabla + hA(x))^2 + h^2W(x) - \mu$.

This infimum is attained iff Γ is the normal state

$$\Gamma_T^{\text{normal}} = \begin{pmatrix} \gamma_T^{\text{normal}} & 0\\ 0 & 1 - \overline{\gamma_T^{\text{normal}}} \end{pmatrix}, \qquad \gamma_T^{\text{normal}} = \left(1 + e^{H/T}\right)^{-1}$$

Order of magnitude of free energy: By Weyl's law,

$$\mathcal{F}_T^{\mathrm{BCS}}\left(\Gamma_T^{\mathrm{normal}}\right) = -T \operatorname{Tr} \ln \left(1 + e^{-H/T}\right) \sim -\frac{T}{(2\pi h)^3} \int_{\mathbb{R}^3} \ln(1 + e^{-p^2/T}) dp \quad \text{as } h \to 0 \,.$$

THE CRITICAL TEMPERATURE

Define

$$\overline{T_c(h)} := \sup \left\{ T \ge 0 : \ F_T^{\text{BCS}} < \mathcal{F}_T^{\text{BCS}} \left(\Gamma_T^{\text{normal}} \right) \right\}$$
$$\underline{T_c(h)} := \inf \left\{ T \ge 0 : \ F_T^{\text{BCS}} = \mathcal{F}_T^{\text{BCS}} \left(\Gamma_T^{\text{normal}} \right) \right\}$$

Lemma 1. $T_c := \lim_{h \to 0} \overline{T_c(h)} = \lim_{h \to 0} \underline{T_c(h)}$ exists in $[0, \infty)$ and is characterized by

inf spec $(K_T + V) < 0$ if $0 \le T < T_c$, inf spec $(K_T + V) \ge 0$ if $T \ge T_c$,

where $K_T = (-\Delta - \mu) \coth((-\Delta - \mu)/2T)$ in $L^2(\mathbb{R}^3)$.

Note that T_c does not depend on the 'macroscopic' A or W.

In the following, we shall assume that V and μ are such that $T_c > 0$, and that the eigenvalue 0 of $K_{T_c} + V$ is simple. This is satisfied, e.g., if $\hat{V} \leq 0$ (and $\neq 0$).

Let α_0 denote the normalized eigenfunction of $K_{T_c} + V$ corresponding to its eigenvalue 0.

MAIN RESULTS: ASYMPTOTICS OF ENERGY AND MINIMIZERS

THEOREM 1. Fix $D \in \mathbb{R}$ and let $T = T_c(1 - h^2 D)$. For appropriate B_1, \ldots, B_4 ,

$$F_T^{\text{BCS}} = \mathcal{F}_T^{\text{BCS}}(\Gamma_T^{\text{normal}}) + h\left(E_D^{\text{GL}} + o(1)\right)$$

with $E_D^{\text{GL}} = \inf_{\psi} \mathcal{E}_D^{\text{GL}}(\psi)$ and const. $h^2 \ge o(1) \ge -\text{const.} h^{1/5}$ for small h.

THEOREM 2. If Γ is an approximate minimizer of \mathcal{F}_T^{BCS} at $T = T_c(1 - h^2 D)$, in the sense that

$$\mathcal{F}_T^{\mathrm{BCS}}(\Gamma) \le \mathcal{F}_T^{\mathrm{BCS}}(\Gamma_T^{\mathrm{normal}}) + h\left(E_D^{\mathrm{GL}} + \epsilon\right)$$

for some small $\epsilon > 0$, then the corresponding α can be **decomposed** as

$$\alpha = \frac{h}{2} \big(\psi(x) \widehat{\alpha}_0(-ih\nabla) + \widehat{\alpha}_0(-ih\nabla) \psi(x) \big) + \sigma$$

with
$$\iint_{\mathcal{C}\times\mathbb{R}^3} |\sigma(x,y)|^2 dx dy \leq \text{const. } h^{3/5}$$
 and
 $\mathcal{E}_D^{\text{GL}}(\psi) \leq E_D^{\text{GL}} + \epsilon + \text{const. } h^{1/5}$

REMARKS ON...

... energy asymptotics:

$$F_T^{\text{BCS}} = \mathcal{F}_T^{\text{BCS}}(\Gamma_T^{\text{normal}}) + h\left(E_D^{\text{GL}} + o(1)\right)$$

• $\mathcal{F}_T^{BCS}(\Gamma_T^{normal}) \sim Ch^{-3}$, hence GL theory gives an $O(h^4)$ correction to the main term.

• For smooth enough A and W, one could also expand $\mathcal{F}_T^{BCS}(\Gamma_T^{normal})$ to order h. We bound directly the energy difference, however!

... asymptotics of almost minimizers:

$$\alpha = \frac{h}{2} \big(\psi(x) \widehat{\alpha}_0(-ih\nabla) + \widehat{\alpha}_0(-ih\nabla) \psi(x) \big) + \sigma$$

• That is,

$$\alpha(x,y) = \frac{1}{2h^2} \left(\psi(x) + \psi(y) \right) \alpha_0 \left(\frac{x-y}{h} \right) + \sigma(x,y) \approx \frac{1}{h^2} \psi\left(\frac{x+y}{2} \right) \alpha_0 \left(\frac{x-y}{h} \right)$$

• To appreciate $\iint |\sigma(x,y)|^2 dx dy \leq \text{const.} h^{3/5}$, note that for the main term $\iint |h^{-2}\psi((x+y)/2)\alpha_0((x-y)/h)|^2 dx dy = \text{const.} h^{-1}$.

The coefficients in the GL functional

$$\mathcal{E}_D^{\mathrm{GL}}(\psi) = \int_{\mathcal{C}} \left[\left| \mathbb{B}_1^{1/2} (-i\nabla + 2A) \psi \right|^2 + \mathbb{B}_2 W |\psi|^2 - \mathbb{B}_3 D |\psi|^2 + \mathbb{B}_4 |\psi|^4 \right] dx$$

Let t be the Fourier transform of $2K_{T_c}\alpha_0 = -2V\alpha_0$, where $\|\alpha_0\|_2 = 1$. Let

$$g_1(z) = \frac{e^{2z} - 2ze^z - 1}{z^2(1+e^z)^2}, \qquad g_2(z) = g'_1(z) + 2g_1(z)/z.$$

Then the matrix \mathbb{B}_1 and the numbers \mathbb{B}_2 , \mathbb{B}_3 and \mathbb{B}_4 are given by $(\beta_c = T_c^{-1})$

$$(\mathbb{B}_{1})_{ij} = \frac{\beta_{c}^{2}}{16} \int_{\mathbb{R}^{3}} t(p)^{2} \left(\delta_{ij} g_{1}(\beta_{c}(p^{2}-\mu)) + 2\beta_{c} p_{i} p_{j} g_{2}(\beta_{c}(p^{2}-\mu)) \right) \frac{dp}{(2\pi)^{3}}, \qquad \mathbb{B}_{1} > \mathbf{0}$$

$$B_{2} = \frac{\beta_{c}^{2}}{4} \int_{\mathbb{R}^{3}} t(p)^{2} g_{1}(\beta_{c}(p^{2}-\mu)) \frac{dp}{(2\pi)^{3}}, \qquad \mathbb{B}_{3} = \frac{\beta_{c}}{8} \int_{\mathbb{R}^{3}} t(p)^{2} \cosh^{-2} \left(\frac{\beta_{c}}{2} (p^{2}-\mu) \right) \frac{dp}{(2\pi)^{3}}, \qquad \mathbb{B}_{3} > \mathbf{0},$$

$$B_{4} = \frac{\beta_{c}^{2}}{16} \int_{\mathbb{R}^{3}} t(p)^{4} \frac{g_{1}(\beta_{c}(p^{2}-\mu))}{p^{2}-\mu} \frac{dp}{(2\pi)^{3}}, \qquad \mathbb{B}_{4} > \mathbf{0}.$$

MAIN RESULTS: ASYMPTOTICS OF THE CRITICAL TEMPERATURE

For every $\psi \in H^1_{\mathrm{per}}(\mathcal{C})$,

$$\mathcal{E}_{D}^{\mathrm{GL}}(\psi) = \int_{\mathcal{C}} \left[\left| \mathbb{B}_{1}^{1/2} (-i\nabla + 2A) \psi \right|^{2} + B_{2} W |\psi|^{2} - B_{3} \mathbf{D} |\psi|^{2} + B_{4} |\psi|^{4} \right] dx$$

is an affine-linear, non-increasing function of D with $\mathcal{E}_D^{GL}(0) = 0$.

Thus, E_D^{GL} is a non-positive, **non-increasing and concave** function of D. Let

$$D_c = \sup\{D \in \mathbb{R} : E_D^{\text{GL}} = 0\}$$

= $\inf\{D \in \mathbb{R} : E_D^{\text{GL}} < 0\}$
= B_3^{-1} inf spec $((-i\nabla + 2A)\mathbb{B}_1(-i\nabla + 2A) + B_2W)$

Corollary 1.

$$\lim_{h \to 0} \frac{\overline{T_c(h)} - T_c}{T_c h^2} = \lim_{h \to 0} \frac{\overline{T_c(h)} - T_c}{T_c h^2} = -D_c$$

Key Semiclassical Estimates

For $\psi \in H^2_{\mathrm{loc}}(\mathbb{R}^d)$ and t "sufficiently nice", let Δ denote the operator

$$\Delta = -\frac{h}{2} \left(\psi(x) t(-ih\nabla) + t(-ih\nabla)\psi(x) \right)$$

The effective Hamiltonian on $L^2(\mathbb{R}^d)\otimes\mathbb{C}^2$ is

$$H_{\Delta} = \begin{pmatrix} (-ih\nabla + hA(x))^2 - \mu + h^2W(x) & \Delta \\ \bar{\Delta} & -(ih\nabla + hA(x))^2 + \mu - h^2W(x) \end{pmatrix}$$

THEOREM 3. Let $f(z) = -\ln(1 + e^{-z})$ and $\varphi(p) = \frac{1}{2}\frac{t(p)}{p^2 - \mu} \tanh(\frac{\beta}{2}(p^2 - \mu))$. Then
 $\frac{h^d}{\beta} \operatorname{Tr} \left[f(\beta H_{\Delta}) - f(\beta H_0) \right] = h^2 E_1 + h^4 E_2 + O(h^6) \left(\|\psi\|_{H^1(\mathcal{C})}^6 + \|\psi\|_{H^2(\mathcal{C})}^2 \right),$
for explicit E_1 and E_2 . Moreover, the off-diagonal entry α_{Δ} of $[1 + e^{\beta H_{\Delta}}]^{-1}$ satisfies

$$\left\|\alpha_{\Delta} - \frac{h}{2}\left(\psi(x)\varphi(-ih\nabla) + \varphi(-ih\nabla)\psi(x)\right)\right\|_{H^1} \le \text{const.} \ h^{3-d/2}\left(\|\psi\|_{H^2(\mathcal{C})} + \|\psi\|_{H^1(\mathcal{C})}^3\right)$$

CONCLUSIONS

- **Rigorous derivation** of Ginzburg-Landau theory, starting from the BCS model.
- For weak external fields and close to the critical temperature, GL arises as an effective theory on the macroscopic scale.
- The relevant scaling limit is **semi-classical** in nature.

Some open problems:

- Treat physical boundary conditions
- Treat self-consistent magnetic fields
- Derive BCS theory from many-body quantum mechanics