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Abstract of the talk

• I will discuss how the Ginzburg–Landau (GL) model of superconductivity
arises as an asymptotic limit of the microscopic Bardeen–Cooper–Schrieffer
(BCS) model.

• The asymptotic limit may be seen as a semiclassical limit and one of the main
difficulties is to derive a semiclassical expansion with minimal regularity as-
sumptions.

• It is not rigorously understood how the BCS model approximates the underlying
many-body quantum system. I will formulate the BCS model as a variational
problem, but only heuristically discuss its relation to quantum mechanics.
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Superconductivity and Superfluidity

Superconductivity is the phenomenon that certain materials have zero electrical resis-
tance below a critical temperature.
This is a quantum phenomenon on a macroscopic scale.

A brief history of superconductivity:

1911 Onnes discovers superconductivity experimentally

1950 Ginzburg and Landau provide a phenomenological macroscopic model for
superconductivity

1957 Bardeen, Cooper and Schrieffer propose a microscopic theory and introduce
the concept of Cooper pairs

1959 Gor’kov gives a derivation of GL theory from BCS theory

In addition, important contributions from Bogoliubov, de Gennes, . . .

The related phenomenon of superfluidity concerns fluids with zero viscosity. While
originally discovered in liquid helium, it is currently being explored in experiments on
ultracold atomic gases.
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The Ginzburg–Landau model

Let C ⊂ R3 be a compact set and let A and W be vector and scalar potentials on C. Set

EGL
D (ψ)=

∫
C

[
B1|(−i∇+ 2A(x))ψ(x)|2 +B2W (x)|ψ(x)|2 −B3D|ψ(x)|2 +B4|ψ(x)|4

]
dx

Here, B1, B3, B4 > 0, B2 ∈ R and D ∈ R are coefficients.

Ginzburg–Landau energy EGL
D = infψ EGL

D (ψ)

A minimizing ψ describes the macroscopic variations in the superfluid density. The
normal state corresponds to ψ ≡ 0, while |ψ| > 0 means superfluidity (or supercond.).

Question: Is the optimal ψ ≡ 0 or not?

For us, C = [0, 1]3 and ψ satisfies periodic boundary conditions (torus)

One is often interested in minimizing over both ψ and A, adding an additional field energy
term. For us, A is fixed (but arbitrary).
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The BCS model

State of the system described by a 2×2 operator-valued matrix (op. in L2(R3)⊕L2(R3))

Γ =

(
γ α
ᾱ 1− γ̄

)
with 0 ≤ Γ ≤ 1

Here, 0 ≤ γ ≤ 1 is the 1-particle density matrix, and α the Cooper-pair wavefunction.

FBCS
T (Γ) := Tr

[(
(−ih∇+ hA(x))

2 − µ+ h2W (x)
)
γ
]
+ T TrΓ lnΓ

+

∫∫
C×R3

V (h−1(x− y))|α(x, y)|2 dx dy

Again C = [0, 1]3, Γ is periodic and Tr stands for the trace per unit volume.

BCS energy FBCS
T = infΓ FBCS

T (Γ)

The normal state corresponds to α ≡ 0, while |α| > 0 describes Cooper pairs.

Question: Is the optimal α ≡ 0 or not?
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Remarks about the BCS model

FBCS
T (Γ) = Tr

[(
(−ih∇+ hA(x))

2 − µ+ h2W (x)
)
γ
]
+ T TrΓ lnΓ

+

∫∫
C×R3

V (h−1(x− y))|α(x, y)|2 dx dy

• Can be heuristically derived from a many-body Hamiltonian for spin 1
2 fermions with

two-body interaction V via two simplifications. First, one restricts to quasi-free
states, and second one drops the direct and exchange term in the interaction
energy.

• Microscopic data: chemical potential µ, temperature T , interaction potential V

• Macroscopic data: vector magnetic potential A, scalar electric potential W

• What is h? It is the ratio of the microscopic and macroscopic scale.

• Technical assumptions: V real-valued, V (x) = V (−x) and V ∈ L3/2(R3)

W and A periodic and Ŵ (p), |Â(p)|(1 + |p|) ∈ ℓ1
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The normal state

Let us first discuss the non-superfluid case, i.e.,

inf
0≤γ≤1

FBCS
T

((
γ 0
0 1− γ

))
= inf

0≤γ≤1
{TrHγ + T Tr (γ ln γ + (1− γ) ln(1− γ))}

= −T Tr ln
(
1 + e−H/T

)
with H = (−ih∇+ hA(x))2 + h2W (x)− µ.

This infimum is attained iff Γ is the normal state

Γnormal
T =

(
γnormal
T 0

0 1− γnormal
T

)
, γnormal

T =
(
1 + eH/T

)−1

.

Order of magnitude of free energy: By Weyl’s law,

FBCS
T

(
Γnormal
T

)
= −T Tr ln

(
1 + e−H/T

)
∼ − T

(2πh)3

∫
R3

ln(1 + e−p
2/T )dp as h→ 0 .
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The critical temperature

Define

Tc(h) := sup
{
T ≥ 0 : FBCS

T < FBCS
T

(
Γnormal
T

)}
Tc(h) := inf

{
T ≥ 0 : FBCS

T = FBCS
T

(
Γnormal
T

)}
Lemma 1. Tc :=limh→0 Tc(h) =limh→0 Tc(h) exists in [0,∞) and is characterized by

inf spec (KT + V ) < 0 if 0 ≤ T < Tc ,

inf spec (KT + V ) ≥ 0 if T ≥ Tc ,

where KT = (−∆− µ) coth((−∆− µ)/2T ) in L2(R3).

Note that Tc does not depend on the ‘macroscopic’ A or W .

In the following, we shall assume that V and µ are such that Tc > 0, and that the
eigenvalue 0 of KTc + V is simple. This is satisfied, e.g., if V̂ ≤ 0 (and ̸≡ 0).

Let α0 denote the normalized eigenfunction of KTc +V corresponding to its eigenvalue 0.

R. Seiringer – Microscopic Derivation of Ginzburg–Landau Theory – July 11, 2013 Nr. 8



Main results: asymptotics of energy and minimizers

THEOREM 1. Fix D ∈ R and let T = Tc(1− h2D). For appropriate B1, . . . , B4,

FBCS
T = FBCS

T (Γnormal
T ) + h

(
EGL
D + o(1)

)
with EGL

D = infψ EGL
D (ψ) and const. h2 ≥ o(1) ≥ −const. h1/5 for small h.

THEOREM 2. If Γ is an approximate minimizer of FBCS
T at T = Tc(1− h2D),

in the sense that

FBCS
T (Γ) ≤ FBCS

T (Γnormal
T ) + h

(
EGL
D + ϵ

)
for some small ϵ > 0, then the corresponding α can be decomposed as

α =
h

2

(
ψ(x)α̂0(−ih∇) + α̂0(−ih∇)ψ(x)

)
+ σ

with
∫∫

C×R3 |σ(x, y)|2 dx dy ≤ const. h3/5 and

EGL
D (ψ) ≤ EGL

D + ϵ+ const. h1/5
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Remarks on...

... energy asymptotics:

FBCS
T = FBCS

T (Γnormal
T ) + h

(
EGL
D + o(1)

)
• FBCS

T (Γnormal
T ) ∼ Ch−3, hence GL theory gives an O(h4) correction to the main term.

• For smooth enough A and W , one could also expand FBCS
T (Γnormal

T ) to order h. We
bound directly the energy difference, however!

... asymptotics of almost minimizers:

α =
h

2

(
ψ(x)α̂0(−ih∇) + α̂0(−ih∇)ψ(x)

)
+ σ

• That is,

α(x, y) =
1

2h2
(ψ(x) + ψ(y))α0

(
x−y
h

)
+ σ(x, y) ≈ 1

h2
ψ
(
x+y
2

)
α0

(
x−y
h

)
• To appreciate

∫∫
|σ(x, y)|2 dx dy ≤ const. h3/5, note that for the main term∫∫

|h−2ψ((x+ y)/2)α0((x− y)/h)|2 dx dy = const. h−1.
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The coefficients in the GL functional

EGL
D (ψ)=

∫
C

[∣∣∣B1
1/2(−i∇+ 2A)ψ

∣∣∣2 +B2W |ψ|2 −B3D|ψ|2 +B4|ψ|4
]
dx

Let t be the Fourier transform of 2KTcα0 = −2V α0, where ∥α0∥2 = 1. Let

g1(z) =
e2z − 2zez − 1

z2(1 + ez)2
, g2(z) = g′1(z) + 2g1(z)/z .

Then the matrix B1 and the numbers B2, B3 and B4 are given by (βc = T−1
c )

(B1)ij =
β2
c

16

∫
R3

t(p)2
(
δijg1(βc(p

2 − µ)) + 2βcpipj g2(βc(p
2 − µ))

) dp

(2π)3
, B1 > 0

B2 =
β2
c

4

∫
R3

t(p)2 g1(βc(p
2 − µ))

dp

(2π)3
,

B3 =
βc
8

∫
R3

t(p)2 cosh−2
(
βc

2 (p2 − µ)
) dp

(2π)3
, B3 > 0 ,

B4 =
β2
c

16

∫
R3

t(p)4
g1(βc(p

2 − µ))

p2 − µ

dp

(2π)3
, B4 > 0 .
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Main results: Asymptotics of the critical temperature

For every ψ ∈ H1
per(C),

EGL
D (ψ)=

∫
C

[∣∣∣B1/2
1 (−i∇+ 2A)ψ

∣∣∣2 +B2W |ψ|2 −B3D|ψ|2 +B4|ψ|4
]
dx

is an affine-linear, non-increasing function of D with EGL
D (0) = 0.

Thus, EGL
D is a non-positive, non-increasing and concave function of D. Let

Dc = sup{D ∈ R : EGL
D = 0}

= inf{D ∈ R : EGL
D < 0}

= B−1
3 inf spec ((−i∇+ 2A)B1(−i∇+ 2A) +B2W )

Corollary 1.

lim
h→0

Tc(h)− Tc
Tch2

= lim
h→0

Tc(h)− Tc

Tch2
= −Dc
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Key Semiclassical Estimates

For ψ ∈ H2
loc(Rd) and t “sufficiently nice”, let ∆ denote the operator

∆ = −h
2
(ψ(x)t(−ih∇) + t(−ih∇)ψ(x))

The effective Hamiltonian on L2(Rd)⊗ C2 is

H∆ =

(
(−ih∇+ hA(x))

2 − µ+ h2W (x) ∆

∆̄ − (ih∇+ hA(x))
2
+ µ− h2W (x)

)
THEOREM 3. Let f(z) = − ln (1 + e−z) and φ(p) = 1

2
t(p)
p2−µ tanh(β2 (p

2 − µ)). Then

hd

β
Tr [f(βH∆)− f(βH0)] = h2E1 + h4E2 +O(h6)

(
∥ψ∥6H1(C) + ∥ψ∥2H2(C)

)
,

for explicit E1 and E2. Moreover, the off-diagonal entry α∆ of [1 + eβH∆ ]−1 satisfies∥∥∥α∆ − h
2 (ψ(x)φ(−ih∇) + φ(−ih∇)ψ(x))

∥∥∥
H1

≤ const. h3−d/2
(
∥ψ∥H2(C) + ∥ψ∥3H1(C)

)
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Conclusions

• Rigorous derivation of Ginzburg-Landau theory, starting from the BCS model.

• For weak external fields and close to the critical temperature, GL arises as an effec-
tive theory on the macroscopic scale.

• The relevant scaling limit is semi-classical in nature.

Some open problems:

• Treat physical boundary conditions

• Treat self-consistent magnetic fields

• Derive BCS theory from many-body quantum mechanics
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