Operator-algebraic construction of two-dimensional quantum field models

Yoh Tanimoto

University of Tokyo, JSPS SPD fellow

July 8th 2013, Rome

Tanti auguri, Roberto!

Y. Tanimoto (University of Tokyo)

OA Construction of 2-dim QFT

Introduction

Formulation of quantum field theory

- Wightman fields
- Osterwalder-Schrader axioms
- operator-algebraic approach (Haag-Kastler nets)

Main open problem of this field

No nontrivial example in 4 spacetime dimensions.

Recent progress in operator-algebraic approach:

- reconstruction of net from a single von Neumann algebra and the Tomita-Takesaki theory (Borchers '92)
- factorizing scalar S-matrix models (Lechner '08)

Present approach:

• purely operator algebraic construction of nets (cf. Longo-Witten '11)

Main result

Interacting Haag-Kastler nets in 2 dim, and more partial constructions.

Wightman axioms

- φ: operator-valued distribution on ℝ^d, [φ(x), φ(y)] = 0 if x ⊥ y (observable at x)
- U: the spacetime symmetry, $U(g)\phi(x)U(g)^* = \phi(gx)$
- Ω the vacuum vector

Equivalently, one considers n-point functions (Wightman functions)

$$W(x_1, t_1, x_2, t_2, \cdots, x_n, t_n) = \langle \Omega, \phi(x_1, t_1)\phi(x_2, t_2)\cdots\phi(x_n, t_n)\Omega \rangle.$$

or their Wick-rotations $S(\cdots x_k, t_k \cdots) := W(\cdots x_k, it_k \cdots)$ (Schwinger functions).

- examples in 2 and 3 dimensions (Glimm, Jaffe, ...)
- $\phi(f)$ is an unbounded operator

< □ > < □ > < □ > < □ > < □ > < □ >

Haag-Kastler net

 $\mathcal{A}(O)$: **von Neumann algebras** (weakly closed algebras of bounded operators on a Hilbert space \mathcal{H}) parametrized by open regions $O \subseteq \mathbb{R}^d$

- isotony: $O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$
- locality: $O_1 \perp O_2 \Rightarrow [\mathcal{A}(O_1), \mathcal{A}(O_2)] = 0$
- Poincaré covariance: $\exists U$: positive energy rep of \mathcal{P}^{\uparrow}_+ such that $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO)$
- vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(O)$

Correspondence: $\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''$ (observables measured in O)

- 4 回 ト 4 三 ト 4 三 ト

Infinitely many von Neumann algebras \Rightarrow difficult to construct nets. **Borchers triple** reduces the question to a **single** von Neumann algebra if the spacetime has **dimension 2**.

- Haag-Kastler net: von Neumann algebras $\mathcal{A}(O)$ parametrized by open regions O acted on by the Poincaré group
- \bullet Borchers triple: a single von Neumann algebra ${\mathfrak M}$ acted on by spacetime translations

 $\begin{array}{l} \mbox{Idea (net \implies Borchers triple): consider only wedges $\mathcal{A}(W_{\rm R})$,}\\ \hline $W_{\rm R} := \{a = (a_0, a_1) : |a_0| < a_1\}$.\\ \mbox{The net \mathcal{A} can be recovered from wedges (Borchers '92):} \end{array}$

$$\mathcal{A}(D_{a,b}) = (U(a)\mathcal{A}(W_{\mathrm{R}})U(a)^*) \cap (U(b)\mathcal{A}(W_{\mathrm{R}})'U(b)^*).$$

< □ > < □ > < □ > < □ > < □ > < □ >

Standard wedge and double cone

Definition

 $(\mathcal{M}, \mathcal{T}, \Omega)$, where \mathcal{M} : vN algebra, \mathcal{T} : positive-energy rep of \mathbb{R}^2 , Ω : vector, is a Borchers triple if Ω is cyclic and separating for \mathcal{M} and

• $\operatorname{Ad} T(a)(\mathcal{M}) \subset \mathcal{M}$ for $a \in W_{\mathrm{R}}$, $T(a)\Omega = \Omega$

Borchers triple \implies net If one defines a "net" by $\mathcal{A}(D_{a,b}) := (U(a)\mathcal{M}U(a)^*) \cap (U(b)\mathcal{M}'U(b)^*)$, then T can be extended to a rep U of Poincaré group and satisfies all the axioms of local net **except the cyclicity of vacuum**.

Problems

- to construct new Borchers triples (wedge-local QFT)
- to show the cyclicity of vacuum (strict locality)

< □ > < □ > < □ > < □ > < □ > < □ >

Internal symmetry

An **internal symmetry** on a Borchers triple $(\mathcal{M}, \mathcal{T}, \Omega)$ is a unitary representation W of a group G such that $\operatorname{Ad} V(g)\mathcal{M} = \mathcal{M}$, $[V(g), \mathcal{T}(a)] = 0$ and $V(g)\Omega = \Omega$. We take an action V of S^1 . $V(t) = e^{itQ}$. $\widetilde{V}(t) = e^{itQ\otimes Q}$.

Theorem (T. arXiv:1301.6090)

Let $\widetilde{\mathcal{M}}_t = (\mathcal{M} \otimes \mathbb{1}) \vee \operatorname{Ad} \widetilde{V}(t) (\mathbb{1} \otimes \mathcal{M}), \ \widetilde{T}(a) = T(a) \otimes T(a), \ \widetilde{\Omega} = \Omega \otimes \Omega.$ Then $(\widetilde{\mathcal{M}}_t, \widetilde{T}, \widetilde{\Omega})$ is a Borchers triple.

$$\frac{\text{Proof:}}{\widetilde{\mathcal{M}}'_t} = \operatorname{Ad} \widetilde{V}(t) = \sum_k V(kt) \otimes dE(k).$$
$$\widetilde{\mathcal{M}}'_t = \operatorname{Ad} \widetilde{V}(t) \left(\mathcal{M}' \otimes \mathbb{1} \right) \vee \left(\mathbb{1} \otimes \mathcal{M}' \right).$$

<u>Question</u>: is $(\widetilde{\mathcal{M}}_t, \widetilde{\mathcal{T}}, \widetilde{\Omega})$ strictly local? <u>Lemma (Lechner '08)</u>: If there is a type I factor ($\cong B(\mathcal{H})$) between $\overline{\operatorname{Ad} T(a)}(\widetilde{\mathcal{M}}_t) \subset \widetilde{\mathcal{M}}_t$, $a \in W_{\mathrm{R}}$ (wedge-split inclusion), then strict locality follows.

Strictly local nets

Let $(\mathcal{M}, \mathcal{T}, \Omega)$ be a wedge-split Borchers triple with S^1 action V.

Theorem (T. arXiv:1301.6090)

The triple $(\widetilde{\mathfrak{M}}_t, \widetilde{T}, \widetilde{\Omega})$ is wedge-split, hence strictly local.

<u>Proof</u>: an intermediate type I factor is given by $\widetilde{\mathcal{R}}(a) = (\mathcal{R}(a) \otimes \mathbb{1}) \vee \operatorname{Ad} V(t)(\mathbb{1} \otimes \mathcal{R}(a))$, where $\operatorname{Ad} T(a)(\mathcal{M}) \subset \mathcal{R}(a) \subset \mathcal{M}$ and $\mathcal{R}(a)$ is the canonical intermediate type I factor (Doplicher-Longo '84).

Example: the complex massive free net $(\mathcal{M}, \mathcal{T}, \Omega) \Rightarrow (\widetilde{\mathcal{M}}_t, \widetilde{\mathcal{T}}, \widetilde{\Omega})$ has nontrivial S-matrix (interacting).

More examples:

- $(\widetilde{\mathcal{M}}_t, \widetilde{\mathcal{T}}, \widetilde{\Omega})$ is again wedge-split with internal symmetry.
- $(\mathcal{N} \otimes \mathcal{N}, \mathcal{T} \otimes \mathcal{T}, \Omega \otimes \Omega)$ where $(\mathcal{N}, \mathcal{T}, \Omega)$ is one of nets with factorizing S-matrix (Lechner '08).

Conjecture: $P(\phi)_2$ models have wedge-split property?

Let $(\mathcal{M}, \mathcal{T}, \Omega)$ be from the real **massive free field**.

Take generators $T(a_+,0)=e^{ia_+P_+}$ and set $\widetilde{R}_{\varphi}=e^{itrac{1}{P_+}\otimes P_+}$, t>0.

Theorem (T. arXiv:1301.6090)

Let $\widetilde{\mathfrak{M}}_t = (\mathfrak{M} \otimes \mathbb{1}) \vee \operatorname{Ad} \widetilde{R}_{\varphi} (\mathbb{1} \otimes \mathfrak{M}), \ \widetilde{T}(a) = T(a) \otimes T(a), \ \widetilde{\Omega} = \Omega \otimes \Omega.$ Then $(\widetilde{\mathfrak{M}}_t, \widetilde{T}, \widetilde{\Omega})$ is a Borchers triple.

Many more examples with inner symmetric function φ (cf. Longo-Witten '11). This is the simplest case $\varphi(p) = e^{itp}$.

Strict locality: by showing modular nuclearity? (cf. Lechner '08).

How a general R_{φ} looks like...

For an inner symmetric function φ , set

•
$$\mathcal{H}^{n} := \mathcal{H}_{1}^{\otimes n}$$

• $P_{i,j}^{m,n} := (\mathbb{1} \otimes \cdots \otimes \frac{1}{P_{1}} \otimes \cdots \otimes \mathbb{1}) \otimes (\mathbb{1} \otimes \cdots \otimes P_{1} \otimes \cdots \otimes \mathbb{1})$, acting
on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}$, $1 \leq i \leq m$ and $1 \leq j \leq n$.
• $\varphi_{i,j}^{m,n} := \varphi(P_{i,j}^{m,n})$ (functional calculus on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}$).
• $\widetilde{R}_{\varphi} := \bigoplus_{m,n} \prod_{i,j} \varphi_{i,j}^{m,n}$

We can take the spectral decomposition of \widetilde{R}_{φ} only with respect to the right component:

•
$$\widetilde{R}_{\varphi} = \bigoplus_n \int \prod_j \Gamma(\varphi(p_j P_1)) \otimes dE_1(p_1) \otimes \cdots \otimes dE_1(p_n)$$

Note that the integrand is a unitary operator which implements a Longo-Witten endomorphism for any value of $p_j \ge 0$.

11 / 16

Massless construction

Input:

- \mathcal{A}_0 : the net of the massive real free field
- P_+ : the generator of positive-lightlike translation $T_0(a_+, 0) = e^{itP_0}$
- Ω_0 : the vacuum
- $V(t) = e^{itP_0 \otimes P_0}, t \ge 0$

Interacting Borchers triple:

- $\mathfrak{M}_t := (\mathcal{A}(W_{\mathrm{R}})' \otimes \mathbb{1}) \vee \mathrm{Ad}V(t)(\mathbb{1} \otimes \mathcal{A}(W_{\mathrm{R}}))$
- $T(a_+, a_-) := T_0(a_+) \otimes T_0(a_-)$
- $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (T. arXiv:1107.2629)

 $(\mathcal{M}_t, T, \Omega)$ is a massless Borchers triple with the S-matrix V(t). Generalization possible for any inner symmetric function φ .

Matrix-valued φ and corresponding massive Borchers triples (Bischoff-T. arXiv:1305.2171)

Massless construction

Theorem (T. arXiv:1107.2629)

Let (\mathcal{A}, T, Ω) be a massless asymptotically complete Haag-Kastler net (S-matrix S is defined on the whole Hilbert space \mathcal{H}) with standard properties (Bisognano-Wichmann property, Haag duality). Then there is a pair $(\mathcal{A}_{\pm}, T_{\pm}, \Omega_{\pm})$ of (one-dimensional) conformal nets on \mathcal{H}_{\pm} such that

- $\mathcal{H} = \mathcal{H}_+ \otimes \mathcal{H}_-$
- $T(a_+, a_-) = T_+(a_+) \otimes T_-(a_-)$

•
$$\Omega = \Omega_+ \otimes \Omega_-$$

• $\mathcal{A}(W_{\mathrm{R}}) = (\mathcal{A}_{+}(\mathbb{R}_{-}) \otimes \mathbb{1}) \vee \mathrm{Ad}S(\mathbb{1} \otimes \mathcal{A}_{-}(\mathbb{R}_{+}))$

Furthermore, for the modular objects of wedge and half-lines we have

•
$$\Delta = \Delta_+ \otimes \Delta_-$$

• $J = S \cdot J_+ \otimes J_-$

Interacting massless net = pair of conformal nets + S-matrix.

Use $\mathcal{A}_0 \subset \mathcal{F}$, where \mathcal{F} is **the free complex fermion** net. \mathcal{A}_0 is the fixed point with respect to the U(1)-gauge action. The net $\mathcal{F} \otimes \mathcal{F}$ can be "twisted" by S_{φ} , and one can choose a twisting which commutes with the U(1)-gauge action, hence give rise to twisting of $\mathcal{A}_0 \otimes \mathcal{A}_0$.

The S-matrix **does not preserve** the subspace of one right-moving + one left-moving waves. In other words, they represent "particle production" (Bischoff-T. arXiv:1111.1671). Strict locality remains open.

cf. Massive models with "temperate" generators show no particle production (Borchers-Buchholz-Schroer '01)

Summary

- construction of interacting Haag-Kastler nets in 2 dimensions
- more Borchers triples, massive/massless
- structure of massless net: two conformal nets + S-matrix

Open problems

- more Borchers triples?
- strict locality of other examples?
- structure of massive/higher dimensional net?
- in higher dimensions?