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Group von Neumann algebras

A von Neumann algebra is a weakly closed, self-adjoint algebra of
operators on a Hilbert space.

Let Γ be a countable group.

I The regular representation of Γ is the unitary representation λ on
`2(Γ) given by λgδh = δgh,
where (δh)h∈Γ is the natural orthonormal basis of `2(Γ).

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra LΓ is defined as the weakly closed
linear span of {λg | g ∈ Γ}.

As we shall see, the relation between the group Γ and its von
Neumann algebra LΓ is extremely subtle.
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The free groups

The free group F2 is defined as “the group generated by a and b subject
to no relations”.

I Elements of F2 are reduced words in the letters a, a−1, b, b−1, like
aba−1a−1b, or like bbbbbba−1bbbb.

I Reduced means : no aa−1, no b−1b, ... in the word, because they
“simplify”. So bbaa−1a is not reduced. It reduces to bba.

I Group operation : concatenation followed by reduction.

Similarly : the free group Fn with n = 2, 3, ... free generators.

Big open problem (Murray - von Neumann, 1943)

Are the free group factors LFn isomorphic for different n = 2, 3, ... ?

(Voiculescu 1990, Radulescu 1993)
They are either all isomorphic, or all non-isomorphic.
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II1 factors

I A factor is a von Neumann algebra M with trivial center.
Equivalently : M is not the direct sum of two von Neumann algebras.

I A II1 factor is a factor M that admits a trace, i.e. a linear functional
τ : M → C such that τ(xy) = τ(yx) for all x , y ∈ M.

By the modular theory of Tomita-Takesaki-Connes,
all von Neumann algebras can be assembled from II1 factors.

The group von Neumann algebra LΓ is a factor iff Γ has infinite
conjugacy classes : ∀ g 6= e, the set {hgh−1 | h ∈ Γ} is infinite.

LΓ always has a trace, namely τ(x) = 〈xδe , δe〉, satisfying
τ(λg ) = 0 for all g 6= e and τ(1) = τ(λe) = 1.

All icc groups Γ give us II1 factors LΓ, but their structure is largely
non-understood.
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Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Amenable groups and Connes’s theorem

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability
m on all the subsets of Γ that is translation invariant : m(gU) = m(U) for
all g ∈ Γ and U ⊂ Γ.

Non-amenable groups ↔ Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic
group von Neumann algebras LΓ.

Actually : there is a unique “amenable” II1 factor.

The following groups are amenable.

• Abelian groups, solvable groups.

• Stable under subgroups, extensions, direct limits.

5/20



Connes’s rigidity conjecture

I Open problem : are the group von Neumann algebras L(SL(n,Z))
for n = 3, 4, ..., non-isomorphic ?

I Conjecturally, they are all non-isomorphic.

I The groups SL(n,Z) with n = 3, 4, ..., have Kazhdan’s property (T).

Conjecture (Connes, 1980)

Let Γ,Λ be icc groups with Kazhdan’s property (T).

Then LΓ ∼= LΛ if and only if Γ ∼= Λ.
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W∗-superrigidity for groups

Within the framework of Sorin Popa’s deformation/rigidity theory,
we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

if Λ is an arbitrary countable group with LG ∼= LΛ, then G ∼= Λ.

These groups are of the form G = (Z/2Z)(I ) o Γ.

Theorem (Berbec-V, 2012)

The same is true for G = (Z/2Z)(Γ) o (Γ× Γ),

for many groups Γ, including the free groups and arbitrary free product
groups Γ = Γ1 ∗ Γ2.
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Group measure space version of the free group
factor problem

Recall : it is wide open whether the LFn with n = 2, 3, ..., are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II1 factors L∞(X ) oFn, arising from free ergodic
probability measure preserving actions Fn y X , are non-isomorphic for
different values of n = 2, 3, ..., independently of the actions.

Group Γ : von Neumann algebra LΓ.

Group action Γ y X : von Neumann algebra L∞(X ) o Γ.

We will explain all these concepts, and some ideas behind the
theorem.
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Probability measure preserving group actions

We study actions of countable groups Γ on probability spaces (X , µ) by

• measurable transformations,

• that preserve the measure µ.

We call Γ y (X , µ) a pmp action.

Favorite examples :

I Irrational rotation Z y T given by n · z = exp(2πiαn) z for a fixed
α ∈ R \Q.

I Bernoulli action Γ y (X0, µ0)Γ given by (g · x)h = xhg .

I The action SL(n,Z) y Tn = Rn/Zn.

I The action Γ y G/Λ for lattices Γ,Λ < G in a Lie group G .
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Group measure space construction (MvN, 1943)

Data : a pmp action Γ y (X , µ).

Output : von Neumann algebra M = L∞(X ) o Γ with trace τ : M → C.

I Notations : g ∈ Γ acts on x ∈ X as g · x .

Then, g acts on a function F : X → C as (αg (F ))(x) = F (g−1 · x).

I L∞(X ) o Γ is generated by unitaries (ug )g∈Γ and a copy of L∞(X ).

I We have the algebraic relations (cf. semidirect products of groups)

• uguh = ugh and u∗g = ug−1 ,

• ug F u∗g = αg (F ).

I Trace : τ(F ) =
∫
F dµ and τ(F ug ) = 0 for g 6= e.
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Essential freeness and ergodicity

We do not want trivial actions.

I Γ y (X , µ) is called (essentially) free if for all g 6= e and
almost every x ∈ X , we have that g · x 6= x .

I Equivalently, L∞(X ) is a maximal abelian subalgebra of L∞(X ) o Γ.

We do not want the union of two actions.

I Γ y (X , µ) is called ergodic if Γ-invariant subsets of X have
measure 0 or 1.

If Γ y (X , µ) is free and ergodic, then L∞(X )oΓ is a II1 factor.
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Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Actions of free groups

Theorem (Popa-V, 2011)

If Fn y X and Fm y Y are free ergodic pmp actions with n 6= m, then
L∞(X ) o Fn 6∼= L∞(Y ) o Fm.

Approach to this theorem :

I Special role of L∞(X ) ⊂ L∞(X ) o Γ : a Cartan subalgebra.

I Uniqueness problem of Cartan subalgebras.

I Countable pmp equivalence relations.

I Gaboriau’s work on orbit equivalence relations for free groups.

12/20



Fundamental groups

I II1 factor M and t > 0 gives II1 factor Mt of t × t matrices over M.

I Clear for t ∈ N. Further, Mt = pMp if p is projection with τ(p) = t.

Write Z o Γ = Z(Γ) o Γ.

Theorem (Popa-V, 2011)

We have L(Z o Fn)t ∼= L(Z o Fm)s , if and only if (n − 1)/t = (m − 1)/s.

Theorem (Voiculescu, Radulescu, Dykema)

If (n − 1)/t2 = (m − 1)/s2, then L(Fn)t ∼= L(Fm)s .

Actually, L(Ft) makes sense for all t > 1.

Fundamental group F(M) = {t > 0 | Mt ∼= M}.

All L∞(X )oFn with 2 ≤ n <∞ have trivial fundamental group.

But L∞(X ) o F∞ can have all kind of fundamental groups.
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Cartan subalgebras

Definition

A Cartan subalgebra A of a II1 factor M is

I a maximal abelian subalgebra : A′ ∩M = A,

I such that the normalizer NM(A) := {u ∈ U(M) | uAu∗ = A} spans a
weakly dense subalgebra of M.

Typical example : L∞(X ) is a Cartan subalgebra of L∞(X ) o Γ whenever
Γ y X is a free, ergodic, pmp action.

Main questions, given a II1 factor M :

I Does M have a Cartan subalgebra ?

I If yes, is it unique ?
• up to unitary conjugacy : A = uBu∗ for some u ∈ U(M),

• up to automorphic conjugacy : A = α(B) for some α ∈ Aut(M).
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Non-uniqueness and non-existene of Cartan
subalgebras

Connes-Jones, 1981 : II1 factors with at least two Cartan subalgebras
that are non-conjugate by an automorphism.

Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : LFn, 2 ≤ n ≤ ∞, has no Cartan subalgebra.

Ozawa-Popa, 2007 : the II1 factor M = L∞(Z2
p) o (Z2 o SL(2,Z)) has

two non-conjugate Cartan subalgebras, namely L∞(Z2
p) and L(Z2).

Speelman-V, 2011 : II1 factors with many Cartan subalgebras
(where “many” has a descriptive set theory meaning).
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Uniqueness of Cartan subalgebras

Theorem (Popa-V, 2011)

Let Fn y X be an arbitrary free ergodic pmp action. Then L∞(X ) is the
unique Cartan subalgebra of L∞(X ) o Fn, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if Fn y X is a profinite free ergodic pmp action.

Profinite actions : Γ y lim←− Γ/Γn where Γn is a decreasing sequence

of finite index subgroups of Γ.

Profinite crossed products L∞(X ) o Fn have a very special approximation
property. Several conceptual novelties were needed to deal

with non profinite actions.
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Why uniqueness of Cartan subalgebras matters

Proposition (Singer, 1955). The following are equivalent.

I There exists an isomorphism π : L∞(X ) o Γ→ L∞(Y ) o Λ with
π(L∞(X )) = L∞(Y ).

I The actions Γ y X and Λ y Y are orbit equivalent.

Orbit equivalence : existence of a measure preserving isomorphism
∆ : X → Y such that ∆(Γ · x) = Λ ·∆(x) for a.e. x ∈ X .

Corollary of our uniqueness of Cartan theorem : if L∞(X ) o Fn is
isomorphic with L∞(Y ) o Fm, then the actions Fn y X and Fm y Y
must be orbit equivalent.

Remaining question : do free groups Fn, Fm with n 6= m admit orbit
equivalent actions ?
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Gaboriau’s notion of cost

Fix a pmp action Γ y (X , µ) and denote by R the orbit equivalence
relation : x ∼ y iff x ∈ Γ · y .

A graphing of R is a family (ϕn) of partial measure preserving
transformations with domain D(ϕn) ⊂ X and range R(ϕn) ⊂ X satisfying :

I (x , ϕn(x)) ∈ R for all n and almost every x ∈ D(ϕn),

I up to measure zero, R is the smallest equivalence relation that
contains the graphs of all the ϕn.

The cost of a graphing is defined as
∑

n µ(D(ϕn)).

The cost of the equivalence relation R is defined as the infimum of the
costs of all graphings.

Theorem (Gaboriau, 1999)

The cost of R(Fn y X ) is n. In particular, the free groups Fn, Fm with
n 6= m do not admit orbit equivalent actions.
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C-rigid groups

We call Γ a C-rigid group if for all free ergodic pmp actions, the II1 factor
L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups Fn, n ≥ 2, are C-rigid.

Theorem (Popa-V, 2012)

All of the following groups are C-rigid.

I Gromov hyperbolic groups.

I Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or
SU(n, 1) or Sp(n, 1).

I The limit groups of Sela.

I Direct products of the above groups.

Unique Cartan for profinite actions of the same groups : Chifan-Sinclair,
2011.
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Which groups are C-rigid ?

A characterization seems even difficult go guess !

Conjecture

If for some n ≥ 1, we have β
(2)
n (Γ) > 0, then Γ is C-rigid.

I (Popa-V, 2011) If Γ is weakly amenable and has β
(2)
1 (Γ) > 0,

then Γ is C-rigid.

I (Ioana, 2012) If Γ = Γ1 ∗ Γ2 nontrivially, then Γ is C-rigid.

I The conjecture is not giving a characterization : lattices in SO(d , 1)

are C-rigid, but have all β
(2)
n zero if d is odd.

Quite problematic : all known counterexamples to C-rigidity admit an
infinite amenable (almost) normal subgroup.
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