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Let [ be a countable group.

» The regular representation of [ is the unitary representation A on
(2(T) given by A\g0p = gn,
where (64)per is the natural orthonormal basis of /2(T).

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra LI is defined as the weakly closed
linear span of {\; | g € T}

~—> As we shall see, the relation between the group [ and its von
Neumann algebra LI is extremely subtle.
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aba—ta=lb, or like bbbbbba~1bbbb.

» Reduced means : no aa— %, no b~1h, ... in the word, because they
“simplify”. So bbaa~'a is not reduced. It reduces to bba.

» Group operation : concatenation followed by reduction.

Similarly : the free group I, with n = 2,3, ... free generators.

Big open problem (Murray - von Neumann, 1943)
Are the free group factors LIF,, isomorphic for different n =2,3,... 7

~— (Voiculescu 1990, Radulescu 1993)
They are either all isomorphic, or all non-isomorphic.
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conjugacy classes : ¥V g # e, the set {hgh™! | h € '} is infinite.

~—» LI always has a trace, namely 7(x) = (xJe,de), satisfying
7(Ag) =0 for all g # e and 7(1) = 7(X\e) = 1.

~—> Allicc groups I give us ll; factors LT, but their structure is largely
non-understood.
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m on all the subsets of ' that is translation invariant : m(gi{) = m(U) for

allgeland U CT.

~—» Non-amenable groups <> Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups I with infinite conjugacy classes have isomorphic
group von Neumann algebras LI

Actually : there is a unique “amenable” Il; factor.

The following groups are amenable.
e Abelian groups, solvable groups.
e Stable under subgroups, extensions, direct limits.
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» Open problem : are the group von Neumann algebras L(SL(n,Z))
for n = 3,4, ..., non-isomorphic ?

» Conjecturally, they are all non-isomorphic.

» The groups SL(n,Z) with n = 3,4, ..., have Kazhdan's property (T).

Conjecture (Connes, 1980)

Let I', A be icc groups with Kazhdan's property (T).
Then LI = LA if and only if T = A.
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if A\ is an arbitrary countable group with LG = LA, then G = A.

~—» These groups are of the form G = (Z/27)") x T

Theorem (Berbec-V, 2012)
The same is true for G = (Z/2Z)") x (I x IN),

for many groups [, including the free groups and arbitrary free product
groups [ =171 %[5,
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Recall : it is wide open whether the LI, with n = 2,3, ..., are isomorphic.

Theorem (Popa-V, 2011)

The group measure space Il; factors L°(X) x I, arising from free ergodic
probability measure preserving actions [F,, ~ X, are non-isomorphic for
different values of n = 2, 3, ..., independently of the actions.

~— Group I' : von Neumann algebra LT.
Group action [ ~ X : von Neumann algebra L™ (X) x I'.

~—> We will explain all these concepts, and some ideas behind the
theorem.
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We study actions of countable groups I" on probability spaces (X, 1) by
e measurable transformations,

o that preserve the measure /.

~— Wecall ~ (X, ;) a pmp action.

Favorite examples :

» Irrational rotation Z ~ T given by n- z = exp(2mwian) z for a fixed
aeR\Q.

» Bernoulli action I ~ (Xo, 110)" given by (g - x)s = Xpg-
> The action SL(n, Z) ~ T" = R"/Z".

» The action ' ~ G/A for lattices [, A < G in a Lie group G.
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» Notations : g €[ actson x € X as g - x.
Then, g acts on a function F : X — C as (ag(F))(x) = F(g ! x).

» L%(X) x T is generated by unitaries (uz)zer and a copy of L™(X).

» We have the algebraic relations (cf. semidirect products of groups)
® Uglp = Ugp and u;‘, = Ug-1,
o ug Fug = ag(F).

» Trace : 7(F) = [ F dpand 7(F ug) =0 for g # e.
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» [~ (X, ) is called (essentially) free if for all g # e and
almost every x € X, we have that g - x # x.

» Equivalently, L°°(X) is a maximal abelian subalgebra of L>(X) x I".

~—> We do not want the union of two actions.

» [~ (X, ) is called ergodic if [-invariant subsets of X have
measure 0 or 1.

~_ If [ ~ (X, p) is free and ergodic, then L°(X) x I is a ll; factor.
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If F, ~ X and F,,, ~ Y are free ergodic pmp actions with n # m, then
L(X) x Fp 2 L°(Y) x Fp,.

Approach to this theorem :

» Special role of L*(X) C L*(X) x I : a Cartan subalgebra.
» Uniqueness problem of Cartan subalgebras.
» Countable pmp equivalence relations.

» Gaboriau’s work on orbit equivalence relations for free groups.
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» Clear for t € N. Further, M* = pMp if p is projection with 7(p) = t.

Write Z 1T = Z(1) x T.

Theorem (Popa-V, 2011)

We have L(ZF,)t = L(ZFp,)*, if and only if (n — 1)/t = (m—1)/s.

Theorem (Voiculescu, Radulescu, Dykema)
If (n—1)/t> = (m—1)/s?, then L(F,)! = L(F,)°.
Actually, L(F;) makes sense for all t > 1.

Fundamental group 7 (M) = {t > 0| M* = M}.
~— All L°(X) x[F, with 2 < n < oo have trivial fundamental group.

But L>(X) x F, can have all kind of fundamental groups.
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Cartan subalgebras

A Cartan subalgebra A of a Il; factor M is
» a maximal abelian subalgebra : AN M = A,
» such that the normalizer Ny (A) := {u € U(M) | uAu* = A} spans a
weakly dense subalgebra of M.

Typical example : L>(X) is a Cartan subalgebra of L>(X) »x " whenever
I~ X is a free, ergodic, pmp action.
Main questions, given a ll; factor M :

» Does M have a Cartan subalgebra ?
> If yes, is it unique ?
e up to unitary conjugacy : A = uBu* for some u € U(M),
e up to automorphic conjugacy : A = a(B) for some a € Aut(M).
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Non-uniqueness and non-existene of Cartan

subalgebras

Connes-Jones, 1981 : Il; factors with at least two Cartan subalgebras
that are non-conjugate by an automorphism.

~—»> Uniqueness of Cartan subalgebras seemed hopeless.
Voiculescu, 1995 : L[, 2 < n < oo, has no Cartan subalgebra.

Ozawa-Popa, 2007 : the II; factor M = L>(Z2) x (Z? x SL(2,7Z)) has
two non-conjugate Cartan subalgebras, namely L>(Z?) and L(Z?).

Speelman-V, 2011 : Il; factors with many Cartan subalgebras
(where “many” has a descriptive set theory meaning).
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Theorem (Popa-V, 2011)

Let F,, ~ X be an arbitrary free ergodic pmp action. Then L™ (X) is the
unique Cartan subalgebra of L™ (X) x FF,,, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if [, ~ X is a profinite free ergodic pmp action.

Profinite actions : [ ~ I|<Ln /T, where [, is a decreasing sequence

of finite index subgroups of .

Profinite crossed products L>(X) x F,, have a very special approximation
property. ~~—» Several conceptual novelties were needed to deal
with non profinite actions.
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Why uniqueness of Cartan subalgebras matters

Proposition (Singer, 1955). The following are equivalent.

» There exists an isomorphism 7 : L°(X) x [ — L*(Y) x A with
m(L*°(X)) = L=(Y).

» The actions [ ~ X and A ~ Y are orbit equivalent.

Orbit equivalence : existence of a measure preserving isomorphism
A X — Y such that A(l' - x) = A - A(x) for a.e. x € X.

Corollary of our uniqueness of Cartan theorem : if L™(X) x F, is
isomorphic with L*°(Y') x I, then the actions F, ~ X and F,, ~ Y
must be orbit equivalent.

Remaining question : do free groups IF,,, IF,, with n £ m admit orbit
equivalent actions ?
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Gaboriau’s notion of cost

Fix a pmp action [ ~ (X, 1) and denote by R the orbit equivalence
relation : x ~ y iff x €T - y.

A graphing of R is a family (y,) of partial measure preserving
transformations with domain D(¢,) C X and range R(p,) C X satisfying :

> (x,¢n(x)) € R for all n and almost every x € D(¢,),
> up to measure zero, R is the smallest equivalence relation that
contains the graphs of all the ¢,,.
The cost of a graphing is defined as ), 1«(D(¢n)).

The cost of the equivalence relation R is defined as the infimum of the
costs of all graphings.

Theorem (Gaboriau, 1999)

The cost of R(F, ~ X) is n. In particular, the free groups F,, F,, with
n # m do not admit orbit equivalent actions.
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We call " a C-rigid group if for all free ergodic pmp actions, the Il; factor
L>(X) x I has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups F,, n > 2, are C-rigid.

Theorem (Popa-V, 2012)
All of the following groups are C-rigid.

» Gromov hyperbolic groups.

» Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or
SU(n, 1) or Sp(n, 1).

» The limit groups of Sela.

» Direct products of the above groups.

Unique Cartan for profinite actions of the same groups : Chifan-Sinclair,
2011.
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Which groups are C-rigid ?

~—» A characterization seems even difficult go guess !

Conjecture

If for some n > 1, we have ﬁ,(,z)(l_) > 0, then I is C-rigid.

» (Popa-V, 2011) If I' is weakly amenable and has ﬁf)(r) >0,
then I is C-rigid.

> (loana, 2012) If I = I'; * > nontrivially, then I is C-rigid.

» The conjecture is not giving a characterization : lattices in SO(d, 1)
are C-rigid, but have all 3% zero if d is odd.

Quite problematic : all known counterexamples to C-rigidity admit an
infinite amenable (almost) normal subgroup.

20/20



