Von Neumann algebras and ergodic theory of group actions

Mathematics and Quantum Physics, in honor of Roberto Longo

Accademia dei Lincei, Roma, July 2013

Stefaan Vaes*

* Supported by ERC Starting Grant VNALG-200749

A **von Neumann algebra** is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

A **von Neumann algebra** is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

Let Γ be a countable group.

A **von Neumann algebra** is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

Let Γ be a countable group.

► The **regular representation** of Γ is the unitary representation λ on $\ell^2(\Gamma)$ given by $\lambda_g \delta_h = \delta_{gh}$, where $(\delta_h)_{h \in \Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma)$.

A **von Neumann algebra** is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

- Let Γ be a countable group.
 - ► The **regular representation** of Γ is the unitary representation λ on $\ell^2(\Gamma)$ given by $\lambda_g \delta_h = \delta_{gh}$, where $(\delta_h)_{h \in \Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma)$.

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra $L\Gamma$ is defined as the weakly closed linear span of $\{\lambda_g \mid g \in \Gamma\}$.

A **von Neumann algebra** is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

- Let Γ be a countable group.
 - ► The **regular representation** of Γ is the unitary representation λ on $\ell^2(\Gamma)$ given by $\lambda_g \delta_h = \delta_{gh}$, where $(\delta_h)_{h \in \Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma)$.

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra $L\Gamma$ is defined as the weakly closed linear span of $\{\lambda_g \mid g \in \Gamma\}$.

As we shall see, the relation between the group Γ and its von Neumann algebra LΓ is extremely subtle.

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

- ► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.
- Reduced means : no aa⁻¹, no b⁻¹b, ... in the word, because they "simplify". So bbaa⁻¹a is not reduced. It reduces to bba.

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

- ► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.
- Reduced means : no aa⁻¹, no b⁻¹b, ... in the word, because they "simplify". So bbaa⁻¹a is not reduced. It reduces to bba.
- ► Group operation : concatenation followed by reduction.

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

- ► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.
- Reduced means : no aa⁻¹, no b⁻¹b, ... in the word, because they "simplify". So bbaa⁻¹a is not reduced. It reduces to bba.
- ► Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with n = 2, 3, ... free generators.

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

- ► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.
- Reduced means : no aa⁻¹, no b⁻¹b, ... in the word, because they "simplify". So bbaa⁻¹a is not reduced. It reduces to bba.
- ► Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with n = 2, 3, ... free generators.

Big open problem (Murray - von Neumann, 1943)

Are the free group factors $L\mathbb{F}_n$ isomorphic for different n = 2, 3, ...?

The free group \mathbb{F}_2 is defined as "the group generated by *a* and *b* subject to no relations".

- ► Elements of F₂ are reduced words in the letters a, a⁻¹, b, b⁻¹, like aba⁻¹a⁻¹b, or like bbbbbba⁻¹bbbb.
- Reduced means : no aa⁻¹, no b⁻¹b, ... in the word, because they "simplify". So bbaa⁻¹a is not reduced. It reduces to bba.
- ► Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with n = 2, 3, ... free generators.

Big open problem (Murray - von Neumann, 1943)

Are the free group factors $L\mathbb{F}_n$ isomorphic for different n = 2, 3, ... ?

(Voiculescu 1990, Radulescu 1993) They are either all isomorphic, or all non-isomorphic.

A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- ▶ A II₁ factor is a factor *M* that admits a trace, i.e. a linear functional $\tau: M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- ▶ A II₁ factor is a factor *M* that admits a trace, i.e. a linear functional $\tau: M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II₁ factors.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- ▶ A II₁ factor is a factor *M* that admits a trace, i.e. a linear functional $\tau: M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II₁ factors.
- → The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : $\forall g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- ▶ A II₁ factor is a factor *M* that admits a trace, i.e. a linear functional $\tau: M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II₁ factors.
- → The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : $\forall g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.

 $\begin{array}{c} \longleftarrow \ \mathsf{L}\mathsf{\Gamma} \ \text{always has a trace, namely } \tau(x) = \langle x \delta_e, \delta_e \rangle, \ \text{satisfying} \\ \tau(\lambda_g) = 0 \ \text{for all } g \neq e \ \text{and} \ \tau(1) = \tau(\lambda_e) = 1. \end{array}$

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- ▶ A II₁ factor is a factor *M* that admits a trace, i.e. a linear functional $\tau: M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II₁ factors.
- → The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : $\forall g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.
- $\begin{array}{c} \longleftarrow \ \mathsf{L}\mathsf{\Gamma} \ \text{always has a trace, namely } \tau(x) = \langle x \delta_e, \delta_e \rangle, \ \text{satisfying} \\ \tau(\lambda_g) = 0 \ \text{for all } g \neq e \ \text{and} \ \tau(1) = \tau(\lambda_e) = 1. \end{array}$
- All icc groups Γ give us II₁ factors $L\Gamma$, but their structure is largely non-understood.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \frown Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \frown Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras $L\Gamma.$

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \frown Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras $L\Gamma$.

Actually : there is a unique "amenable" II_1 factor.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \frown Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras $L\Gamma$.

Actually : there is a unique "amenable" II_1 factor.

The following groups are amenable.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \frown Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras $L\Gamma$.

Actually : there is a unique "amenable" II_1 factor.

The following groups are amenable.

- Abelian groups, solvable groups.
- Stable under subgroups, extensions, direct limits.

▶ Open problem : are the group von Neumann algebras L(SL(n, Z)) for n = 3, 4, ..., non-isomorphic ?

- ▶ Open problem : are the group von Neumann algebras L(SL(n, Z)) for n = 3, 4, ..., non-isomorphic ?
- Conjecturally, they are all non-isomorphic.

- ▶ Open problem : are the group von Neumann algebras L(SL(n, Z)) for n = 3, 4, ..., non-isomorphic ?
- Conjecturally, they are all non-isomorphic.
- ▶ The groups $SL(n,\mathbb{Z})$ with n = 3, 4, ..., have Kazhdan's property (T).

- ► Open problem : are the group von Neumann algebras L(SL(n, Z)) for n = 3, 4, ..., non-isomorphic ?
- Conjecturally, they are all non-isomorphic.
- ▶ The groups $SL(n,\mathbb{Z})$ with n = 3, 4, ..., have Kazhdan's property (T).

Conjecture (Connes, 1980)

Let Γ, Λ be icc groups with Kazhdan's property (T). Then $L\Gamma \cong L\Lambda$ if and only if $\Gamma \cong \Lambda$.

Within the framework of Sorin Popa's *deformation/rigidity theory*, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups $\mathcal G$ such that $L\mathcal G$ entirely remembers $\mathcal G$:

Within the framework of Sorin Popa's *deformation/rigidity theory*, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups $\mathcal G$ such that $L\mathcal G$ entirely remembers $\mathcal G$:

if Λ is an arbitrary countable group with $L\mathcal{G} \cong L\Lambda$, then $\mathcal{G} \cong \Lambda$.

Within the framework of Sorin Popa's *deformation/rigidity theory*, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups $\mathcal G$ such that $L\mathcal G$ entirely remembers $\mathcal G$:

if Λ is an arbitrary countable group with $L\mathcal{G} \cong L\Lambda$, then $\mathcal{G} \cong \Lambda$.

 \checkmark These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(l)} \rtimes \Gamma$.

Within the framework of Sorin Popa's *deformation/rigidity theory*, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups $\mathcal G$ such that $\mathsf{L}\mathcal G$ entirely remembers $\mathcal G$:

if Λ is an arbitrary countable group with $L\mathcal{G} \cong L\Lambda$, then $\mathcal{G} \cong \Lambda$.

$$\checkmark$$
 These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(l)} \rtimes \Gamma$.

Theorem (Berbec-V, 2012)

The same is true for $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$,

Within the framework of Sorin Popa's *deformation/rigidity theory*, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups $\mathcal G$ such that $\mathsf{L}\mathcal G$ entirely remembers $\mathcal G$:

if Λ is an arbitrary countable group with $L\mathcal{G} \cong L\Lambda$, then $\mathcal{G} \cong \Lambda$.

$$\checkmark$$
 These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(l)} \rtimes \Gamma$.

Theorem (Berbec-V, 2012)

The same is true for $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$,

for many groups $\Gamma,$ including the free groups and arbitrary free product groups $\Gamma=\Gamma_1*\Gamma_2.$

Group measure space version of the free group factor problem

Recall : it is wide open whether the $L\mathbb{F}_n$ with n = 2, 3, ..., are isomorphic.

Group measure space version of the free group factor problem

Recall : it is wide open whether the $L\mathbb{F}_n$ with n = 2, 3, ..., are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II₁ factors $L^{\infty}(X) \rtimes \mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of n = 2, 3, ..., independently of the actions.
Group measure space version of the free group factor problem

Recall : it is wide open whether the $L\mathbb{F}_n$ with n = 2, 3, ..., are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II₁ factors $L^{\infty}(X) \rtimes \mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of n = 2, 3, ..., independently of the actions.

Group Γ : von Neumann algebra L Γ . Group action $\Gamma \curvearrowright X$: von Neumann algebra L $^{\infty}(X) \rtimes \Gamma$.

Group measure space version of the free group factor problem

Recall : it is wide open whether the $L\mathbb{F}_n$ with n = 2, 3, ..., are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II₁ factors $L^{\infty}(X) \rtimes \mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of n = 2, 3, ..., independently of the actions.

Group Γ : von Neumann algebra L Γ . Group action $\Gamma \curvearrowright X$: von Neumann algebra L $^{\infty}(X) \rtimes \Gamma$.

We will explain all these concepts, and some ideas behind the theorem.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ .

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ.
- \checkmark We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ.
- \checkmark We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

▶ Irrational rotation $\mathbb{Z} \curvearrowright \mathbb{T}$ given by $n \cdot z = \exp(2\pi i\alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ .
- \checkmark We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- ▶ Irrational rotation $\mathbb{Z} \curvearrowright \mathbb{T}$ given by $n \cdot z = \exp(2\pi i\alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ given by $(g \cdot x)_h = x_{hg}$.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ.
- \longrightarrow We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- ▶ Irrational rotation $\mathbb{Z} \curvearrowright \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ given by $(g \cdot x)_h = x_{hg}$.
- The action $SL(n,\mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations,
- that preserve the measure μ.
- \longrightarrow We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- ▶ Irrational rotation $\mathbb{Z} \curvearrowright \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ given by $(g \cdot x)_h = x_{hg}$.
- The action $SL(n,\mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.
- The action $\Gamma \curvearrowright G/\Lambda$ for lattices $\Gamma, \Lambda < G$ in a Lie group G.

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

• Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$.

Then, g acts on a function $F : X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

▶ Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$. Then, g acts on a function $F : X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

▶ $L^{\infty}(X) \rtimes \Gamma$ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of $L^{\infty}(X)$.

- Notations : g ∈ Γ acts on x ∈ X as g ⋅ x. Then, g acts on a function F : X → C as (α_g(F))(x) = F(g⁻¹ ⋅ x).
- ▶ $L^{\infty}(X) \rtimes \Gamma$ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of $L^{\infty}(X)$.
- ▶ We have the algebraic relations (cf. semidirect products of groups)

- Notations : g ∈ Γ acts on x ∈ X as g ⋅ x. Then, g acts on a function F : X → C as (α_g(F))(x) = F(g⁻¹ ⋅ x).
- ▶ $L^{\infty}(X) \rtimes \Gamma$ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of $L^{\infty}(X)$.
- ▶ We have the algebraic relations (cf. semidirect products of groups)
 - $u_g u_h = u_{gh}$ and $u_g^* = u_{g^{-1}}$,
 - $u_g F u_g^* = \alpha_g(F).$

- Notations : g ∈ Γ acts on x ∈ X as g ⋅ x. Then, g acts on a function F : X → C as (α_g(F))(x) = F(g⁻¹ ⋅ x).
- ▶ $L^{\infty}(X) \rtimes \Gamma$ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of $L^{\infty}(X)$.
- ▶ We have the algebraic relations (cf. semidirect products of groups)
 - $u_g u_h = u_{gh}$ and $u_g^* = u_{g^{-1}}$,
 - $u_g F u_g^* = \alpha_g(F).$
- Trace : $\tau(F) = \int F d\mu$ and $\tau(F u_g) = 0$ for $g \neq e$.

Essential freeness and ergodicity

→ We do not want trivial actions.

→ We do not want trivial actions.

▶ $\Gamma \curvearrowright (X, \mu)$ is called **(essentially)** free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.

→ We do not want trivial actions.

- ► $\Gamma \curvearrowright (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

✓ We do not want trivial actions.

- ► $\Gamma \curvearrowright (X, \mu)$ is called **(essentially) free** if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

→ We do not want the union of two actions.

✓ We do not want trivial actions.

- ► $\Gamma \curvearrowright (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.
- → We do not want the union of two actions.
 - ► Γ ∩ (X, µ) is called ergodic if Γ-invariant subsets of X have measure 0 or 1.

We do not want trivial actions.

- ► $\Gamma \curvearrowright (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.
- → We do not want the union of two actions.
 - ► Γ ∩ (X, µ) is called ergodic if Γ-invariant subsets of X have measure 0 or 1.

 \longrightarrow If $\Gamma \curvearrowright (X, \mu)$ is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

Approach to this theorem :

▶ Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- Uniqueness problem of Cartan subalgebras.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- Uniqueness problem of Cartan subalgebras.
- Countable pmp equivalence relations.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- Uniqueness problem of Cartan subalgebras.
- Countable pmp equivalence relations.
- Gaboriau's work on orbit equivalence relations for free groups.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $L(\mathbb{Z} \wr \mathbb{F}_n)^t \cong L(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if (n-1)/t = (m-1)/s.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $L(\mathbb{Z} \wr \mathbb{F}_n)^t \cong L(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if (n-1)/t = (m-1)/s.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $L(\mathbb{F}_n)^t \cong L(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all t > 1.

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $L(\mathbb{Z} \wr \mathbb{F}_n)^t \cong L(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if (n-1)/t = (m-1)/s.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $L(\mathbb{F}_n)^t \cong L(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all t > 1.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.

▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $L(\mathbb{Z} \wr \mathbb{F}_n)^t \cong L(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if (n-1)/t = (m-1)/s.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $L(\mathbb{F}_n)^t \cong L(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all t > 1.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

 \bigwedge All $L^{\infty}(X) \rtimes \mathbb{F}_n$ with $2 \le n < \infty$ have trivial fundamental group.

- ▶ II₁ factor M and t > 0 gives II₁ factor M^t of $t \times t$ matrices over M.
- ▶ Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $L(\mathbb{Z} \wr \mathbb{F}_n)^t \cong L(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if (n-1)/t = (m-1)/s.

Theorem (Voiculescu, Radulescu, Dykema) If $(n-1)/t^2 = (m-1)/s^2$, then $L(\mathbb{F}_n)^t \cong L(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all t > 1.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

Cartan subalgebras

Definition

A Cartan subalgebra A of a II_1 factor M is

▶ a maximal abelian subalgebra : $A' \cap M = A$,

Cartan subalgebras

Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- ▶ such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.
Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- Such that the normalizer N_M(A) := {u ∈ U(M) | uAu^{*} = A} spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- Such that the normalizer N_M(A) := {u ∈ U(M) | uAu^{*} = A} spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II_1 factor M:

Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- Such that the normalizer N_M(A) := {u ∈ U(M) | uAu^{*} = A} spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II_1 factor M:

Does *M* have a Cartan subalgebra ?

Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- Such that the normalizer N_M(A) := {u ∈ U(M) | uAu^{*} = A} spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II_1 factor M:

- Does M have a Cartan subalgebra ?
- If yes, is it unique ?

Definition

A Cartan subalgebra A of a II₁ factor M is

- ▶ a maximal abelian subalgebra : $A' \cap M = A$,
- Such that the normalizer N_M(A) := {u ∈ U(M) | uAu^{*} = A} spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II_1 factor M:

- Does M have a Cartan subalgebra ?
- If yes, is it unique ?
 - up to unitary conjugacy : $A = uBu^*$ for some $u \in U(M)$,
 - up to automorphic conjugacy : $A = \alpha(B)$ for some $\alpha \in Aut(M)$.

Non-uniqueness and non-existene of Cartan subalgebras

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

✓ Uniqueness of Cartan subalgebras seemed hopeless.

Non-uniqueness and non-existene of Cartan subalgebras

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

→ Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : $L\mathbb{F}_n$, $2 \le n \le \infty$, has no Cartan subalgebra.

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

→ Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : $L\mathbb{F}_n$, $2 \le n \le \infty$, has no Cartan subalgebra.

Ozawa-Popa, 2007 : the II₁ factor $M = L^{\infty}(\mathbb{Z}_p^2) \rtimes (\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ has two non-conjugate Cartan subalgebras, namely $L^{\infty}(\mathbb{Z}_p^2)$ and $L(\mathbb{Z}^2)$.

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

✓ Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : $L\mathbb{F}_n$, $2 \le n \le \infty$, has no Cartan subalgebra.

Ozawa-Popa, 2007 : the II₁ factor $M = L^{\infty}(\mathbb{Z}_p^2) \rtimes (\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ has two non-conjugate Cartan subalgebras, namely $L^{\infty}(\mathbb{Z}_p^2)$ and $L(\mathbb{Z}^2)$.

Speelman-V, 2011 : II_1 factors with **many** Cartan subalgebras (where "many" has a descriptive set theory meaning).

Let $\mathbb{F}_n \curvearrowright X$ be an **arbitrary** free ergodic pmp action. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

Let $\mathbb{F}_n \curvearrowright X$ be an **arbitrary** free ergodic pmp action. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Let $\mathbb{F}_n \curvearrowright X$ be an **arbitrary** free ergodic pmp action. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \cap X$ is a **profinite** free ergodic pmp action.

Let $\mathbb{F}_n \curvearrowright X$ be an **arbitrary** free ergodic pmp action. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \curvearrowright X$ is a **profinite** free ergodic pmp action.

Profinite actions : $\Gamma \curvearrowright \varprojlim \Gamma / \Gamma_n$ where Γ_n is a decreasing sequence of finite index subgroups of Γ .

Let $\mathbb{F}_n \curvearrowright X$ be an **arbitrary** free ergodic pmp action. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \curvearrowright X$ is a **profinite** free ergodic pmp action.

Profinite actions : $\Gamma \frown \varprojlim \Gamma / \Gamma_n$ where Γ_n is a decreasing sequence of finite index subgroups of Γ .

Profinite crossed products $L^{\infty}(X) \rtimes \mathbb{F}_n$ have a very special approximation property. Several conceptual novelties were needed to deal with non profinite actions.

Proposition (Singer, 1955). The following are equivalent.

► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent**.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent**.

Orbit equivalence : existence of a measure preserving isomorphism $\Delta : X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent**.

Orbit equivalence : existence of a measure preserving isomorphism $\Delta : X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Corollary of our uniqueness of Cartan theorem : if $L^{\infty}(X) \rtimes \mathbb{F}_n$ is isomorphic with $L^{\infty}(Y) \rtimes \mathbb{F}_m$, then the actions $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ must be orbit equivalent.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent**.

Orbit equivalence : existence of a measure preserving isomorphism $\Delta : X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Corollary of our uniqueness of Cartan theorem : if $L^{\infty}(X) \rtimes \mathbb{F}_n$ is isomorphic with $L^{\infty}(Y) \rtimes \mathbb{F}_m$, then the actions $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ must be orbit equivalent.

Remaining question : do free groups \mathbb{F}_n , \mathbb{F}_m with $n \neq m$ admit orbit equivalent actions ?

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

• $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

▶ $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

• up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

• $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

• up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .

The cost of a graphing is defined as $\sum_{n} \mu(D(\varphi_n))$.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

• $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

- up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .
- The cost of a graphing is defined as $\sum_{n} \mu(D(\varphi_n))$.

The cost of the equivalence relation \mathcal{R} is defined as the infimum of the costs of all graphings.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by \mathcal{R} the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of \mathcal{R} is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

▶ $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

- up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .
- The cost of a graphing is defined as $\sum_{n} \mu(D(\varphi_n))$.

The cost of the equivalence relation \mathcal{R} is defined as the infimum of the costs of all graphings.

Theorem (Gaboriau, 1999)

The cost of $\mathcal{R}(\mathbb{F}_n \curvearrowright X)$ is *n*. In particular, the free groups \mathbb{F}_n , \mathbb{F}_m with $n \neq m$ do not admit orbit equivalent actions.

\mathcal{C} -rigid groups

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

All of the following groups are C-rigid.

Gromov hyperbolic groups.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- Gromov hyperbolic groups.
- Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or SU(n, 1) or Sp(n, 1).

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- Gromov hyperbolic groups.
- Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or SU(n, 1) or Sp(n, 1).
- ► The limit groups of Sela.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- Gromov hyperbolic groups.
- Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or SU(n, 1) or Sp(n, 1).
- The limit groups of Sela.
- Direct products of the above groups.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

All of the following groups are C-rigid.

- Gromov hyperbolic groups.
- Discrete subgroups of rank one simple Lie groups, like SO(n, 1) or SU(n, 1) or Sp(n, 1).
- The limit groups of Sela.
- Direct products of the above groups.

Unique Cartan for **profinite** actions of the same groups : Chifan-Sinclair, 2011.

Which groups are C-rigid ?

Which groups are *C*-rigid ?

 \sim A characterization seems even difficult go guess !
Which groups are *C*-rigid ?

✓ A characterization seems even difficult go guess !

Conjecture

If for some $n \ge 1$, we have $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.

Conjecture

If for some $n \ge 1$, we have $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.

(Popa-V, 2011) If Γ is weakly amenable and has β₁⁽²⁾(Γ) > 0, then Γ is C-rigid.

Conjecture

If for some $n \ge 1$, we have $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.

- (Popa-V, 2011) If Γ is weakly amenable and has β⁽²⁾₁(Γ) > 0, then Γ is C-rigid.
- ► (Ioana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is C-rigid.

Conjecture

If for some $n \ge 1$, we have $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.

- (Popa-V, 2011) If Γ is weakly amenable and has β⁽²⁾₁(Γ) > 0, then Γ is C-rigid.
- ▶ (loana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is C-rigid.
- The conjecture is not giving a characterization : lattices in SO(d, 1) are C-rigid, but have all β_n⁽²⁾ zero if d is odd.

Conjecture

If for some $n \ge 1$, we have $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.

- (Popa-V, 2011) If Γ is weakly amenable and has β⁽²⁾₁(Γ) > 0, then Γ is C-rigid.
- ▶ (loana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is C-rigid.
- The conjecture is not giving a characterization : lattices in SO(d, 1) are C-rigid, but have all β_n⁽²⁾ zero if d is odd.

Quite problematic : all known counterexamples to C-rigidity admit an infinite amenable (almost) normal subgroup.