Von Neumann algebras and ergodic theory of group actions

Mathematics and Quantum Physics, in honor of Roberto Longo

Accademia dei Lincei, Roma, July 2013

Stefaan Vaes[∗]

Supported by ERC Starting Grant VNALG-200749

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

Let Γ be a countable group.

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

- Let Γ be a countable group.
	- **I** The regular representation of Γ is the unitary representation λ on $\ell^2(\mathsf{\Gamma})$ given by $\lambda_{\mathcal{g}}\delta_h = \delta_{\mathcal{g}h},$ where $(\delta_h)_{h\in\Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma).$

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

- Let Γ be a countable group.
	- **I** The regular representation of Γ is the unitary representation λ on $\ell^2(\mathsf{\Gamma})$ given by $\lambda_{\mathcal{g}}\delta_h = \delta_{\mathcal{g}h},$ where $(\delta_h)_{h\in\Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma).$

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra LΓ is defined as the weakly closed linear span of $\{\lambda_{\mathbf{g}} \mid \mathbf{g} \in \Gamma\}.$

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a Hilbert space.

- Let Γ be a countable group.
	- **I** The regular representation of Γ is the unitary representation λ on $\ell^2(\mathsf{\Gamma})$ given by $\lambda_{\mathcal{g}}\delta_h = \delta_{\mathcal{g}h},$ where $(\delta_h)_{h\in\Gamma}$ is the natural orthonormal basis of $\ell^2(\Gamma).$

Definition (Murray - von Neumann, 1943)

The group von Neumann algebra LΓ is defined as the weakly closed linear span of $\{\lambda_{\mathbf{g}} \mid \mathbf{g} \in \Gamma\}.$

As we shall see, the relation between the group **Γ** and its von Neumann algebra LΓ is extremely subtle.

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

- ► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.
- ► Reduced means : no aa^{-1} , no $b^{-1}b$, ... in the word, because they "simplify". So $bbaa^{-1}a$ is not reduced. It reduces to bba .

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

- ► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.
- ► Reduced means : no aa^{-1} , no $b^{-1}b$, ... in the word, because they "simplify". So $bbaa^{-1}a$ is not reduced. It reduces to bba .
- \triangleright Group operation : concatenation followed by reduction.

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

- ► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.
- ► Reduced means : no aa^{-1} , no $b^{-1}b$, ... in the word, because they "simplify". So $bbaa^{-1}a$ is not reduced. It reduces to bba .
- \triangleright Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with $n = 2, 3, ...$ free generators.

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

- ► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.
- ► Reduced means : no aa^{-1} , no $b^{-1}b$, ... in the word, because they "simplify". So $bbaa^{-1}a$ is not reduced. It reduces to bba .
- \triangleright Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with $n = 2, 3, ...$ free generators.

Big open problem (Murray - von Neumann, 1943)

Are the free group factors LF_n isomorphic for different $n = 2, 3, ...$?

The free group \mathbb{F}_2 is defined as "the group generated by a and b subject to no relations".

- ► Elements of \mathbb{F}_2 are reduced words in the letters a, a^{-1}, b, b^{-1} , like $aba^{-1}a^{-1}b$, or like bbbbbba⁻¹bbbb.
- ► Reduced means : no aa^{-1} , no $b^{-1}b$, ... in the word, because they "simplify". So $bbaa^{-1}a$ is not reduced. It reduces to bba .
- \triangleright Group operation : concatenation followed by reduction.

Similarly : the free group \mathbb{F}_n with $n = 2, 3, ...$ free generators.

Big open problem (Murray - von Neumann, 1943)

Are the free group factors LF_n isomorphic for different $n = 2, 3, ...$?

(Voiculescu 1990, Radulescu 1993) They are either all isomorphic, or all non-isomorphic.

A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- A II₁ factor is a factor M that admits a trace, i.e. a linear functional $\tau : M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- A II₁ factor is a factor M that admits a trace, i.e. a linear functional $\tau : M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II_1 factors.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- A II₁ factor is a factor M that admits a trace, i.e. a linear functional $\tau : M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II_1 factors.
- The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : ∀ $g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- A II₁ factor is a factor M that admits a trace, i.e. a linear functional $\tau : M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- \sim By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II_1 factors.
- The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : ∀ $g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.

 \sim LF always has a trace, namely $\tau(x) = \langle x \delta_e, \delta_e \rangle$, satisfying $\tau(\lambda_{\mathcal{E}}) = 0$ for all $g \neq e$ and $\tau(1) = \tau(\lambda_{e}) = 1$.

- A factor is a von Neumann algebra M with trivial center. Equivalently : M is not the direct sum of two von Neumann algebras.
- A II₁ factor is a factor M that admits a trace, i.e. a linear functional $\tau : M \to \mathbb{C}$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in M$.
- \sim By the modular theory of Tomita-Takesaki-Connes, all von Neumann algebras can be assembled from II_1 factors.
- The group von Neumann algebra LΓ is a factor iff Γ has infinite conjugacy classes : ∀ $g \neq e$, the set $\{hgh^{-1} \mid h \in \Gamma\}$ is infinite.
- \sim LF always has a trace, namely $\tau(x) = \langle x\delta_e, \delta_e \rangle$, satisfying $\tau(\lambda_{\sigma}) = 0$ for all $g \neq e$ and $\tau(1) = \tau(\lambda_{e}) = 1$.
- All icc groups Γ give us II¹ factors LΓ, but their structure is largely non-understood.

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

Definition (von Neumann, 1929)

A group Γ is called amenable if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \rightarrow Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras LΓ.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \rightarrow Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras LΓ.

Actually : there is a unique "amenable" II_1 factor.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \rightarrow Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras LΓ.

Actually : there is a unique "amenable" II_1 factor.

The following groups are amenable.

Definition (von Neumann, 1929)

A group Γ is called **amenable** if there exists a finitely additive probability m on all the subsets of Γ that is translation invariant : $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in \Gamma$ and $\mathcal{U} \subset \Gamma$.

 \rightarrow Non-amenable groups \leftrightarrow Banach-Tarski paradox.

Theorem (Connes, 1976)

All amenable groups Γ with infinite conjugacy classes have isomorphic group von Neumann algebras LΓ.

Actually : there is a unique "amenable" $II₁$ factor.

The following groups are amenable.

- Abelian groups, solvable groups.
- Stable under subgroups, extensions, direct limits.

• Open problem : are the group von Neumann algebras $L(SL(n, \mathbb{Z}))$ for $n = 3, 4, \dots$, non-isomorphic ?

- **Open problem** : are the group von Neumann algebras $L(SL(n, \mathbb{Z}))$ for $n = 3, 4, \dots$, non-isomorphic ?
- \triangleright Conjecturally, they are all non-isomorphic.
- **Open problem** : are the group von Neumann algebras $L(SL(n, \mathbb{Z}))$ for $n = 3, 4, \dots$, non-isomorphic ?
- \triangleright Conjecturally, they are all non-isomorphic.
- The groups $SL(n, \mathbb{Z})$ with $n = 3, 4, ...$, have Kazhdan's property (T).
- **Open problem** : are the group von Neumann algebras $L(SL(n, \mathbb{Z}))$ for $n = 3, 4, \dots$, non-isomorphic ?
- \triangleright Conjecturally, they are all non-isomorphic.
- The groups $SL(n, \mathbb{Z})$ with $n = 3, 4, ...$, have Kazhdan's property (T).

Conjecture (Connes, 1980)

Let Γ , Λ be icc groups with Kazhdan's property (T) . Then $LT \cong LA$ if and only if $\Gamma \cong \Lambda$.

Within the framework of Sorin Popa's deformation/rigidity theory, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

Within the framework of Sorin Popa's deformation/rigidity theory, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

if Λ is an arbitrary countable group with $\mathsf{L}\mathcal{G} \cong \mathsf{L}\Lambda$, then $\mathcal{G} \cong \Lambda$.

Within the framework of Sorin Popa's deformation/rigidity theory, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

if Λ is an arbitrary countable group with $L\mathcal{G} \cong L\Lambda$, then $\mathcal{G} \cong \Lambda$.

These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(I)} \rtimes \mathsf{\Gamma}.$

Within the framework of Sorin Popa's deformation/rigidity theory, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

if Λ is an arbitrary countable group with $\mathsf{L}\mathcal{G} \cong \mathsf{L}\Lambda$, then $\mathcal{G} \cong \Lambda$.

These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(I)} \rtimes \mathsf{\Gamma}.$

Theorem (Berbec-V, 2012)

The same is true for $\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{(\Gamma)}\rtimes(\Gamma\times\Gamma),$

Within the framework of Sorin Popa's deformation/rigidity theory, we prove :

Theorem (Ioana-Popa-V, 2010)

There are countable groups G such that LG entirely remembers G :

if Λ is an arbitrary countable group with $\mathsf{L}\mathcal{G} \cong \mathsf{L}\Lambda$, then $\mathcal{G} \cong \Lambda$.

These groups are of the form $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{(I)} \rtimes \mathsf{\Gamma}.$

Theorem (Berbec-V, 2012)

The same is true for $\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{(\Gamma)}\rtimes(\Gamma\times\Gamma),$

for many groups Γ, including the free groups and arbitrary free product groups $\Gamma = \Gamma_1 * \Gamma_2$.

Group measure space version of the free group factor problem

Recall : it is wide open whether the LF_n with $n = 2, 3, ...$, are isomorphic.

Group measure space version of the free group factor problem

Recall : it is wide open whether the LF_n with $n = 2, 3, ...$, are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II $_1$ factors $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of $n = 2, 3, \dots$, independently of the actions.
Group measure space version of the free group factor problem

Recall : it is wide open whether the LF_n with $n = 2, 3, ...$, are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II $_1$ factors $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of $n = 2, 3, \dots$, independently of the actions.

Group Γ : von Neumann algebra LΓ. Group action $\overline{\Gamma} \curvearrowright X$: von Neumann algebra $\mathsf{L}^\infty(X) \rtimes \overline{\Gamma}$.

Group measure space version of the free group factor problem

Recall : it is wide open whether the LF_n with $n = 2, 3, ...$, are isomorphic.

Theorem (Popa-V, 2011)

The group measure space II $_1$ factors $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, arising from free ergodic probability measure preserving actions $\mathbb{F}_n \curvearrowright X$, are non-isomorphic for different values of $n = 2, 3, \dots$, independently of the actions.

Group Γ : von Neumann algebra LΓ. Group action $\overline{\Gamma} \curvearrowright X$: von Neumann algebra $\mathsf{L}^\infty(X) \rtimes \overline{\Gamma}$.

 \sim We will explain all these concepts, and some ideas behind the theorem.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations.
- that preserve the measure μ .

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations.
- that preserve the measure μ .
- We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations.
- that preserve the measure μ .
- We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

Irrational rotation $\mathbb{Z} \cap \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

We study actions of countable groups Γ on probability spaces (X, μ) by

- measurable transformations.
- that preserve the measure μ .
- \sim We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- **Irrational rotation** $\mathbb{Z} \cap \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- **Bernoulli action** $\Gamma \curvearrowright (X_0, \mu_0)^\Gamma$ given by $(g \cdot x)_h = x_{hg}$.

We study actions of countable groups Γ on probability spaces (X,μ) by

- measurable transformations.
- that preserve the measure μ .
- \sim We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- **Irrational rotation** $\mathbb{Z} \cap \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- **Bernoulli action** $\Gamma \curvearrowright (X_0, \mu_0)^\Gamma$ given by $(g \cdot x)_h = x_{hg}$.
- The action $SL(n, \mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

We study actions of countable groups Γ on probability spaces (X,μ) by

- measurable transformations.
- that preserve the measure μ .
- \sim We call $\Gamma \curvearrowright (X, \mu)$ a pmp action.

Favorite examples :

- **Irrational rotation** $\mathbb{Z} \cap \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- **Bernoulli action** $\Gamma \curvearrowright (X_0, \mu_0)^\Gamma$ given by $(g \cdot x)_h = x_{hg}$.
- The action $SL(n, \mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.
- **IF The action** $\Gamma \cap G/\Lambda$ **for lattices** $\Gamma, \Lambda < G$ **in a Lie group G.**

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

► Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$.

Then, g acts on a function $F: X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

► Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$. Then, g acts on a function $F: X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

► L[∞] (X) × Γ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of L[∞] (X) .

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

- ► Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$. Then, g acts on a function $F: X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.
- ► L[∞] (X) × Γ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of L[∞] (X) .
- \triangleright We have the algebraic relations (cf. semidirect products of groups)

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

- ► Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$. Then, g acts on a function $F: X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.
- ► L[∞] (X) × Γ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of L[∞] (X) .
- \triangleright We have the algebraic relations (cf. semidirect products of groups)
	- $u_g u_h = u_{gh}$ and $u_g^* = u_{g^{-1}}$,
	- $u_g F u_g^* = \alpha_g(F)$.

Output : von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ with trace $\tau : M \to \mathbb{C}$.

- ► Notations : $g \in \Gamma$ acts on $x \in X$ as $g \cdot x$. Then, g acts on a function $F: X \to \mathbb{C}$ as $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.
- ► L[∞] (X) × Γ is generated by unitaries $(u_g)_{g \in \Gamma}$ and a copy of L[∞] (X) .
- \triangleright We have the algebraic relations (cf. semidirect products of groups)
	- $u_g u_h = u_{gh}$ and $u_g^* = u_{g^{-1}}$,
	- $u_g F u_g^* = \alpha_g(F)$.

► Trace : $\tau(F) = \int F d\mu$ and $\tau(F u_g) = 0$ for $g \neq e$.

Essential freeness and ergodicity

We do not want trivial actions.

We do not want trivial actions.

 $\triangleright \square \cap (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.

 \rightarrow We do not want trivial actions.

- $\triangleright \square \cap (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- ► Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

We do not want trivial actions.

- $\triangleright \square \cap (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- ► Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

 \rightarrow We do not want the union of two actions.

 \rightarrow We do not want trivial actions.

- $\triangleright \square \curvearrowright (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- ► Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.
- \rightarrow We do not want the union of two actions.
	- $\triangleright \Gamma \curvearrowright (X, \mu)$ is called ergodic if Γ-invariant subsets of X have measure 0 or 1.

 \sim We do not want trivial actions.

- $\triangleright \square \curvearrowright (X, \mu)$ is called (essentially) free if for all $g \neq e$ and almost every $x \in X$, we have that $g \cdot x \neq x$.
- ► Equivalently, $L^{\infty}(X)$ is a maximal abelian subalgebra of $L^{\infty}(X) \rtimes \Gamma$.
- \sim We do not want the union of two actions.
	- $\triangleright \ \Gamma \curvearrowright (X, \mu)$ is called **ergodic** if Γ -invariant subsets of X have measure 0 or 1.

If $\Gamma \curvearrowright (X, \mu)$ is free and ergodic, then $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is a II_1 factor.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

Approach to this theorem :

► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- \triangleright Uniqueness problem of Cartan subalgebras.

If $\mathbb{F}_n \cap X$ and $\mathbb{F}_m \cap Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- \triangleright Uniqueness problem of Cartan subalgebras.
- \triangleright Countable pmp equivalence relations.

If $\mathbb{F}_n \cap X$ and $\mathbb{F}_m \cap Y$ are free ergodic pmp actions with $n \neq m$, then $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

- ► Special role of $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$: a Cartan subalgebra.
- \triangleright Uniqueness problem of Cartan subalgebras.
- \triangleright Countable pmp equivalence relations.
- Gaboriau's work on orbit equivalence relations for free groups.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $\mathsf{L}(\mathbb{Z} \wr \mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if $(n-1)/t = (m-1)/s$.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $\mathsf{L}(\mathbb{Z} \wr \mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if $(n-1)/t = (m-1)/s$.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $\mathsf{L}(\mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all $t > 1$.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $\mathsf{L}(\mathbb{Z} \wr \mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if $(n-1)/t = (m-1)/s$.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $\mathsf{L}(\mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all $t > 1$.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $\mathsf{L}(\mathbb{Z} \wr \mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if $(n-1)/t = (m-1)/s$.

Theorem (Voiculescu, Radulescu, Dykema)

If $(n-1)/t^2 = (m-1)/s^2$, then $\mathsf{L}(\mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{F}_m)^s$. Actually, $L(\mathbb{F}_t)$ makes sense for all $t > 1$.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

All $\mathsf{L}^\infty(X)\rtimes \mathbb{F}_n$ with $2\leq n<\infty$ have trivial fundamental group.

If II₁ factor M and $t > 0$ gives II₁ factor M^t of $t \times t$ matrices over M.

► Clear for $t \in \mathbb{N}$. Further, $M^t = pMp$ if p is projection with $\tau(p) = t$.

Write $\mathbb{Z} \wr \Gamma = \mathbb{Z}^{(\Gamma)} \rtimes \Gamma$.

Theorem (Popa-V, 2011)

We have $\mathsf{L}(\mathbb{Z} \wr \mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{Z} \wr \mathbb{F}_m)^s$, if and only if $(n-1)/t = (m-1)/s$.

Theorem (Voiculescu, Radulescu, Dykema) If $(n-1)/t^2 = (m-1)/s^2$, then $\mathsf{L}(\mathbb{F}_n)^t \cong \mathsf{L}(\mathbb{F}_m)^s$.

Actually, $L(\mathbb{F}_t)$ makes sense for all $t > 1$.

Fundamental group $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

All $\mathsf{L}^\infty(X)\rtimes \mathbb{F}_n$ with $2\leq n<\infty$ have trivial fundamental group. But $\mathsf{L}^\infty(X) \rtimes \mathbb{F}_\infty$ can have all kind of fundamental groups.

Cartan subalgebras

Definition

A Cartan subalgebra A of a II₁ factor M is

► a maximal abelian subalgebra : $A' \cap M = A$,

Cartan subalgebras

Definition

A **Cartan subalgebra** A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- **►** such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.
Definition

A **Cartan subalgebra** A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- ► such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Definition

A Cartan subalgebra A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- ► such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II₁ factor M:

Definition

A **Cartan subalgebra** A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- ► such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II₁ factor M:

 \triangleright Does M have a Cartan subalgebra?

Definition

A **Cartan subalgebra** A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- ► such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II₁ factor M:

- \triangleright Does M have a Cartan subalgebra?
- If yes, is it unique ?

Definition

A **Cartan subalgebra** A of a II_1 factor M is

- ► a maximal abelian subalgebra : $A' \cap M = A$,
- ► such that the normalizer $\mathcal{N}_M(A) := \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ spans a weakly dense subalgebra of M.

Typical example : $L^{\infty}(X)$ is a Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ whenever $\Gamma \curvearrowright X$ is a free, ergodic, pmp action.

Main questions, given a II₁ factor M:

- \triangleright Does M have a Cartan subalgebra?
- If yes, is it unique ?
	- up to unitary conjugacy : $A = uBu^*$ for some $u \in \mathcal{U}(M)$,
	- up to automorphic conjugacy : $A = \alpha(B)$ for some $\alpha \in \text{Aut}(M)$.

Non-uniqueness and non-existene of Cartan subalgebras

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

Uniqueness of Cartan subalgebras seemed hopeless.

Non-uniqueness and non-existene of Cartan subalgebras

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : LF_n, $2 \le n \le \infty$, has no Cartan subalgebra.

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : LF_n, $2 \le n \le \infty$, has no Cartan subalgebra.

 $\bf O$ zawa-Popa, 2007 : the II $_1$ factor $M = L^\infty(\mathbb{Z}_p^2) \rtimes (\mathbb{Z}^2 \rtimes \text{SL}(2,\mathbb{Z}))$ has two non-conjugate Cartan subalgebras, namely $\mathsf{L}^\infty({\mathbb Z}_p^2)$ and $\mathsf{L}({\mathbb Z}^2).$

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : LF_n, $2 \le n \le \infty$, has no Cartan subalgebra.

 $\bf O$ zawa-Popa, 2007 : the II $_1$ factor $M = L^\infty(\mathbb{Z}_p^2) \rtimes (\mathbb{Z}^2 \rtimes \text{SL}(2,\mathbb{Z}))$ has two non-conjugate Cartan subalgebras, namely $\mathsf{L}^\infty({\mathbb Z}_p^2)$ and $\mathsf{L}({\mathbb Z}^2).$

Speelman-V, 2011 : II_1 factors with **many** Cartan subalgebras (where "many" has a descriptive set theory meaning).

Let $\mathbb{F}_n \curvearrowright X$ be an $\mathsf{arbitrary}$ free ergodic pmp action. Then $\mathsf{L}^\infty(X)$ is the unique Cartan subalgebra of $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, up to unitary conjugacy.

Let $\mathbb{F}_n \curvearrowright X$ be an $\mathsf{arbitrary}$ free ergodic pmp action. Then $\mathsf{L}^\infty(X)$ is the unique Cartan subalgebra of $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Let $\mathbb{F}_n \curvearrowright X$ be an $\mathsf{arbitrary}$ free ergodic pmp action. Then $\mathsf{L}^\infty(X)$ is the unique Cartan subalgebra of $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \curvearrowright X$ is a **profinite** free ergodic pmp action.

Let $\mathbb{F}_n \curvearrowright X$ be an $\mathsf{arbitrary}$ free ergodic pmp action. Then $\mathsf{L}^\infty(X)$ is the unique Cartan subalgebra of $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \curvearrowright X$ is a **profinite** free ergodic pmp action.

Profinite actions : $\Gamma \cap \lim_{n \to \infty} \Gamma/\Gamma_n$ where Γ_n is a decreasing sequence of finite index subgroups of Γ.

Let $\mathbb{F}_n \curvearrowright X$ be an $\mathsf{arbitrary}$ free ergodic pmp action. Then $\mathsf{L}^\infty(X)$ is the unique Cartan subalgebra of $\mathsf{L}^\infty(\mathsf{X})\rtimes\mathbb{F}_n$, up to unitary conjugacy.

But before that very general result, there was :

Theorem (Ozawa-Popa, 2007)

Same conclusion if $\mathbb{F}_n \curvearrowright X$ is a **profinite** free ergodic pmp action.

Profinite actions : $\Gamma \cap \lim_{n \to \infty} \Gamma/\Gamma_n$ where Γ_n is a decreasing sequence of finite index subgroups of Γ.

Profinite crossed products $\mathsf{L}^\infty(X)\rtimes \mathbb{F}_n$ have a very special approximation property. Several conceptual novelties were needed to deal with non profinite actions.

Proposition (Singer, 1955). The following are equivalent.

► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y).$

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- **IF** The actions $\Gamma \cap X$ and $\Lambda \cap Y$ are **orbit equivalent.**

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- **IF** The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent.**

Orbit equivalence : existence of a measure preserving isomorphism $\Delta: X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- **IF** The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent.**

Orbit equivalence : existence of a measure preserving isomorphism $\Delta: X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Corollary of our uniqueness of Cartan theorem : if $L^{\infty}(X) \rtimes \mathbb{F}_n$ is isomorphic with $\mathsf{L}^\infty(\mathsf{Y})$ $\rtimes \mathbb{F}_m$, then the actions $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ must be orbit equivalent.

Proposition (Singer, 1955). The following are equivalent.

- ► There exists an isomorphism $\pi : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Lambda$ with $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.
- **IF** The actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are **orbit equivalent.**

Orbit equivalence : existence of a measure preserving isomorphism $\Delta: X \to Y$ such that $\Delta(\Gamma \cdot x) = \Lambda \cdot \Delta(x)$ for a.e. $x \in X$.

Corollary of our uniqueness of Cartan theorem : if $L^{\infty}(X) \rtimes \mathbb{F}_n$ is isomorphic with $\mathsf{L}^\infty(\mathsf{Y})$ $\rtimes \mathbb{F}_m$, then the actions $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ must be orbit equivalent.

Remaining question : do free groups \mathbb{F}_n , \mathbb{F}_m with $n \neq m$ admit orbit equivalent actions ?

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

 \triangleright $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

 \triangleright $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,

If up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

- \triangleright $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,
- **If** up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .

The **cost of a graphing** is defined as $\sum_{n} \mu(D(\varphi_n))$.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

- \triangleright $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,
- **If** up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .
- The **cost of a graphing** is defined as $\sum_{n} \mu(D(\varphi_n))$.

The cost of the equivalence relation R is defined as the infimum of the costs of all graphings.

Fix a pmp action $\Gamma \curvearrowright (X, \mu)$ and denote by R the **orbit equivalence** relation : $x \sim y$ iff $x \in \Gamma \cdot y$.

A graphing of $\mathcal R$ is a family (φ_n) of partial measure preserving transformations with domain $D(\varphi_n) \subset X$ and range $R(\varphi_n) \subset X$ satisfying :

- \triangleright $(x, \varphi_n(x)) \in \mathcal{R}$ for all *n* and almost every $x \in D(\varphi_n)$,
- **If** up to measure zero, \mathcal{R} is the smallest equivalence relation that contains the graphs of all the φ_n .
- The **cost of a graphing** is defined as $\sum_{n} \mu(D(\varphi_n))$.

The cost of the equivalence relation R is defined as the infimum of the costs of all graphings.

Theorem (Gaboriau, 1999)

The cost of $\mathcal{R}(\mathbb{F}_n \cap X)$ is n. In particular, the free groups \mathbb{F}_n , \mathbb{F}_m with $n \neq m$ do not admit orbit equivalent actions.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

All of the following groups are C -rigid.

 \blacktriangleright Gromov hyperbolic groups.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(X) \rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- \blacktriangleright Gromov hyperbolic groups.
- \triangleright Discrete subgroups of rank one simple Lie groups, like $SO(n, 1)$ or $SU(n, 1)$ or $Sp(n, 1)$.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(\overline{X})\rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- \blacktriangleright Gromov hyperbolic groups.
- \triangleright Discrete subgroups of rank one simple Lie groups, like $SO(n, 1)$ or $SU(n, 1)$ or $Sp(n, 1)$.
- \blacktriangleright The limit groups of Sela.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(\overline{X})\rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

- \blacktriangleright Gromov hyperbolic groups.
- \triangleright Discrete subgroups of rank one simple Lie groups, like $SO(n, 1)$ or $SU(n, 1)$ or $Sp(n, 1)$.
- \blacktriangleright The limit groups of Sela.
- \triangleright Direct products of the above groups.

We call Γ a C-rigid group if for all free ergodic pmp actions, the II₁ factor $\mathsf{L}^\infty(\overline{X})\rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra, up to unitary conjugacy.

We have seen (Popa-V, 2011) : the free groups \mathbb{F}_n , $n \geq 2$, are C-rigid.

Theorem (Popa-V, 2012)

All of the following groups are C -rigid.

- \blacktriangleright Gromov hyperbolic groups.
- \triangleright Discrete subgroups of rank one simple Lie groups, like $SO(n, 1)$ or $SU(n, 1)$ or $Sp(n, 1)$.
- \blacktriangleright The limit groups of Sela.
- \triangleright Direct products of the above groups.

Unique Cartan for **profinite** actions of the same groups : Chifan-Sinclair, 2011.

Which groups are C-rigid?

Which groups are C-rigid ?

A characterization seems even difficult go guess !
Which groups are C-rigid?

A characterization seems even difficult go guess !

Conjecture

If for some $n\geq 1$, we have $\beta^{(2)}_n(\Gamma)>0$, then Γ is $\mathcal C$ -rigid.

Conjecture

If for some $n\geq 1$, we have $\beta^{(2)}_n(\Gamma)>0$, then Γ is $\mathcal C$ -rigid.

► (Popa-V, 2011) If Γ is weakly amenable and has $\beta_1^{(2)}$ $j_1^{(2)}(\Gamma) > 0,$ then Γ is C -rigid.

Conjecture

If for some $n\geq 1$, we have $\beta^{(2)}_n(\Gamma)>0$, then Γ is $\mathcal C$ -rigid.

- ► (Popa-V, 2011) If Γ is weakly amenable and has $\beta_1^{(2)}$ $j_1^{(2)}(\Gamma) > 0,$ then Γ is \mathcal{C} -rigid.
- \triangleright (Ioana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is C-rigid.

Conjecture

If for some $n\geq 1$, we have $\beta^{(2)}_n(\Gamma)>0$, then Γ is $\mathcal C$ -rigid.

- ► (Popa-V, 2011) If Γ is weakly amenable and has $\beta_1^{(2)}$ $j_1^{(2)}(\Gamma) > 0,$ then $Γ$ is C -rigid.
- \triangleright (Ioana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is *C*-rigid.
- In The conjecture is not giving a characterization : lattices in $SO(d,1)$ are $\mathcal C$ -rigid, but have all $\beta^{(2)}_n$ zero if d is odd.

Conjecture

If for some $n\geq 1$, we have $\beta^{(2)}_n(\Gamma)>0$, then Γ is $\mathcal C$ -rigid.

- ► (Popa-V, 2011) If Γ is weakly amenable and has $\beta_1^{(2)}$ $j_1^{(2)}(\Gamma) > 0,$ then Γ is \mathcal{C} -rigid.
- \triangleright (Ioana, 2012) If $\Gamma = \Gamma_1 * \Gamma_2$ nontrivially, then Γ is C-rigid.
- In The conjecture is not giving a characterization : lattices in $SO(d,1)$ are $\mathcal C$ -rigid, but have all $\beta^{(2)}_n$ zero if d is odd.

Quite problematic: all known counterexamples to C -rigidity admit an infinite amenable (almost) normal subgroup.