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The problem

Derivation of macroscopic laws from microscopic models.

Lot of different instances, today I will concentrate on

energy transport starting from a classical Hamiltonian

microscopic model.

In other words:

Is it possible to obtain the Fourier law (or the heat

equation) starting from a microscopic Hamiltonian model ?
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The problem

Several results are available when the microscopic dynamics

has a random part, starting with [Olla-Varadhan-Yau 93],

but very little exist in the purely determinist case.

A natural first step is to consider the case with no

convection and consisting of weakly interacting systems.

A situation in which one can hope to use some kind of

perturbative argument.
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The problem

To try to mimic the well established stochastic results, it

seems natural to assume that the individual systems have a

complex (chaotic) motion.

Yet, before doing perturbations, one needs to understand

the weak coupling limit (perturbing the identity does not

make much sense).

4



The model

Consider a Hamiltonian H(q, p) with compact energy levels

and a graph or lattice (say Zd). At each site x of the lattice

we have a system with coordinates (qx, px) ∈ R2d∗ . For each

Λ ⊂ Zd consider the system

Hε
Λ(q̄, p̄) =

∑
x∈Λ

H(qx, py) + ε
∑
|x−y|=1

V (qx, qy)

We are interested in the macroscopic distribution of the

ex(t) = 1
2
p2
x(t) .
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The model

To ensure good statistical properties we assume that H

determines a Anosov contact flow on each energy level (e.g.

geodesic flow on a compact manifold of strictly negative

sectional curvature [triple linkage Hunt, MacKay, 2003]).

Use the coordinates (qx, vx, ex), vx = |px|−1px, and consider

random initial conditions of the following type

E(f) =

∫
f(q, v, ē)h(q, v) dq dv

for given h ∈ C1 and ēx > 0.
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The current

d

dt
ex = ε

∑
|x−y|=1

∇V (qx, qy)(px + py) =:
∑
|x−y|=1

εjx,y.

The microcanonical measure is symmetric in p, hence in

equilibrium Eeq,e(jx,y) = 0.

The effective exchange of energy is due to fluctuations
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Hydrodynamics limit

Let ΛL := {x ∈ Zd : |x| ≤ L}, then, for each

ϕ ∈ C∞(Rd,R), consider

1

Ld

∑
x∈ΛL

ϕ(L−1x)ex(L
2t) =

1

Ld

∑
x∈ΛL

ex(L
2t)δL−1x(ϕ),

and assume that

lim
L→∞

1

Ld

∑
x∈ΛL

ēxδL−1x(ϕ) =

∫
Rd

u0(x)ϕ(x)dx.

The goal is to prove that, for almost all initial conditions,

lim
L→∞

1

Ld

∑
x∈ΛL

ex(L
2t)δL−1x(ϕ) =

∫
Rd

u(x, t)ϕ(x)dx
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∂tu = div(κ(u)∇u)

u(x, 0) = u0(x)

and the diffusivity κ is given by the Green-Kubo formula

κ(u) = ε2

∫ ∞
0

∑
x

Eeq,u(jx,x+1(t)j0,1(0))dt.

We are VERY far from proving something like this.
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Weak coupling limit

As a first step let us define, for L fixed, the variables

Eε,x(t) = ex(ε−2t) and consider the limit ε→ 0.

The hope is that the limit is a process for the energy alone

to which the ideas developed to study the Hydrodynamics

limit for stochastic systems (starting with [Guo,

Papanicolaou, Varadhan, 88] and [Varadhan, 93]) can be

applied.
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Theorem (Dolgopyat, L. (2011)). For each d∗ ≥ 3 and

T ∈ R+ the process {Eε,x(t)}t≤T converges in law to a

limit {Ex(t)}t≤T satisfying the mesoscopic SDE

dEx =
∑
|x−y|=1

b(Ex, Ey)dt+
∑
|x−y|=1

a(Ex, Ey)dBx,y

Ex(0) = ēx

where b(Ex, Ey) = −b(Ey, Ex), a(Ex, Ey) = a(Ey, Ex) and

Bx,y = −By,x are independent standard Brownian

motions.
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The result includes the fact that the SDE is well posed

(uniqueness of the Martingale problem) since zero is

unreachable and

b,a2 ∈ C∞((0,∞)2) and, for Ex ≤ Ey,

a(Ex, Ey)2 =
AEx√

2Ey
+O

(
E

3
2
x E−1

y

)
b(Ex, Ey) =

Ad

2
√

2Ey
+O

(
E

1
2
x E−1

y

)
,

d∗ = 2 should also work, but it is harder to prove.
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The only invariant measures are absolutely continuous w.r.t.

Leb. with density hβ =
∏

x∈Λ E
d
2
−1

x e−βEx .

The SDE corresponds to a parabolic PDE with generator

L =
1

2h0

∑
|x−y|=1

(∂Ex − ∂Ey)h0b
2(∂Ex − ∂Ey).
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The basic ingredient to take the hydrodynamic limit (or, at

least, study the fluctuations in equilibrium) on the

mesoscopic equation, is a spectral gap of size L−2 for the

operator L acting on a region of volume Ld.

It has been obtained for similar models by [Sasada, 2015],

but for our model there is a problem at high energies due to

soft interactions.

14



Hard core interactions

1

Obstacles gray, particles black.

Introduced in [Bunimovich, L., Pellegrinotti, Suhov, 1992]

and used to heuristically study energy transport by [Gaspard,

Gilbert, 2008-9].

15



Summary

I have proposed a two step strategy. In one case (soft

interations) one can complete the first step, but not yet the

second. In the second case (hard core interactions) one can

complete the second step, but not yet the first.

This is already sad, in addition one can have doubts about

the strategy itself.

16



Green-Kubo

A (non trivial) formal computation [Bernardin, Huveneers,

Lebowitz, L., Olla, 2015] shows that if κ is the diffusivity for

the original model and κM the diffusivity for the mesoscopic

equation, then

κ = ε2κM +O(ε3).

This gives some hope that the mesoscopic equation indeed

describes the right behaviour of the system.
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So, let us be bold, and ask:

can we say something for ε > 0 ?

Two basic questions:

• Can one establish the converge to the limit, for ε→ 0

for time scales longer than ε−2?

• Can one establish the Green-Kubo formula ?

To answer is needed

• control on error terms in the limit theorem (Local

central limit theorem with errors).

• control on the decay of correlations.
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At the moment, I do not see how to address rigorously such

questions in the Hamiltonian setting. So, to build up some

understanding, it seems a good idea to start with a

much much simpler model.
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Simplifying to the point of being ridiculous:

• reduce the lattice from Zd to a point

• reduce the fast variable from an Anosov flow to an

expanding map of the circle

• reduce the space in which the conserved quantity lives

from R+ to T1 (compact !)

• reduce the current to some artificial mechanism that

changes the conserved quantity
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Simplified model

Then, you get the dynamical systems Fε ∈ C3(T2,T2)

F (x, θ) = (f(x, θ), θ + εω(x, θ))

with ∂xf ≥ λ > 1. We consider initial conditions θ0 = θ∗

and x0 to be a random variable so that

E(ϕ(x0, θ0)) =

∫
T1

ϕ(x, θ∗)ρ(x)dx

with ρ ∈ C∞.
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Simplified model

Let (xn, θn) = F n(x, θ), then ω(xn, θn) = ε−1(θn+1 − θn)

plays the role of the current. It is known that, for each

θ ∈ T, f(·, θ) has a unique a.c.i.m. µθ.

We should then ask

ω̄(θ) = µθ(ω(·, θ)) = 0.
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Too hard!

Suppose instead that ω̄ has only two non degenerate zeroes.

Define Θε(t) = θdtε−1e.

Averaging ([Anosov, ’60], [Bogolyubov-Mitropolskii, ’61])

limε→0 Θε(t) = Θ(t), where

Θ̇ = ω̄(Θ)

Θ(0) = θ∗.
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Fluctuations around average (CLT) ([Dolgopyat, 2004])

Let ξε(t) = ε−
1
2 (Θε(t)−Θ(t)), then, for t ∈ [0, T ], ξε

converges in law to a random variable satisfying

dξ = b(Θ(t))dt+ a(Θ(t))dW

ξ(0) = 0.
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Non-linear SDE

Θε ∼ Θ +
√
εζ but Θ +

√
εζ ∼ ηε where

dηε = ω̄(ηε)dt+
√
εσ(ηε)dB

ηε(0) = θ.

Such SDE were introduced by [Hasselmann, 1976] and

extensively studied by Wentzell–Freidlin and Kifer in the

70’s-80’s.
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Local CLT with error

Theorem (De Simoi, L., preprint 2015; De

Simoi-L.-Poquet-Volk, 2016). For all β ∈ (0, 1/2) there

exists C, ε0 > 0 and a coupling Pc such that, for all

ε < ε0 and t ∈ [ε ln ε−1, ε−β], we have

Pc(|Θε(t)− ηε(t)| ≥ Cε)| ≤ Cεβ.

Hence, if we do measurements up to the scale ε the

stochastic and deterministic process are close with high

probability for a time of order o(ε−1/2).
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Decay of correlations

Theorem (De Simoi, L.). If the central Lyapunov

exponent is negative, then there exists ε0 > 0 such that,

for all ε ∈ (0, ε0), the system has a unique physical

measure µ. Moreover, for each f, g ∈ C1(T2,R)

|µ(f ◦ F n
ε · g)− µ(f)µ(g)| ≤ C#e

−C#
ε

ln ε−1 n.
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The last results are far form proving that it is possible to

study the original Hamiltonian system with ε > 0.

However, I believe they can be considered as a proof of

concept that the proposed strategy is not totally crazy.
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