On the replica approach for statistical mechanics of random system

Giorgio Parisi

- Spin glasses in the infinite range limit (the Sherrington Kirkpatrick model).
- The computation of the free energy in the SK model (mean field approximation).
- The heuristic approach base on replicas.
- A first step toward a different approach.
- Some interesting conjectures.

The simplest Ising spin glass (SK) has the following random Hamiltonian:

$$H_J[\vec{\sigma}] = \sum_{i,k=1,N} J_{i,k}\sigma(i)\sigma(k)$$

 $\sigma_i = \pm 1, \, i = 1, N.$

The J are random (e.g. Gaussian distributed with zero average).

$$E[J_{i,k}] \equiv \overline{J_{i,k}} = 0, \qquad E[J_{i,k}^2] \equiv \overline{J_{i,k}^2} = N^{-1}$$

Equivalently $H_J[\vec{\sigma}_1]$ is a random Gaussian function:

$$\overline{H_J[\vec{\sigma}_1]} = 0; \qquad \overline{H_J[\vec{\sigma}_1]H_J[\vec{\sigma}_2]} = N(\vec{\sigma}_1, \vec{\sigma}_2) \equiv N\sum_i \sigma_1(i)\sigma_2(i)$$

The probability distribution of the spectrum of J is known: the Dyson semicircle law.

Partition function:

$$Z_J = \sum_{\vec{\sigma}} \exp(-\beta H_J[\vec{\sigma}]) \qquad 2^N \text{ terms} \qquad \left(H_J[\vec{\sigma}] = \sum_{i,k=1,N} J_{i,k}\sigma(i)\sigma(k) \right)$$

Free energy:

$$\beta N f_J^N(\beta) = -\log(Z_J)$$

We want to compute

$$\tilde{f}(\beta) = \lim_{N \to \infty} \overline{f_J^N(\beta)}$$

The overline represent the average over the J's.

Which is the result for the value of the free energy?

We start with a function q(x) defined in the interval $0 \le x \le 1$. The function $g_q(x,h)$ is defined in the strip $0 \le x \le 1, -\infty < h < \infty$. Boundary condition: $g_q(1,h) = \log(\cosh(\beta h))$; the function $g_q(x,h)$ satisfies the following q(x) dependent antiparabolic equation:

$$\frac{\partial g_q(x,h)}{\partial x} = -\frac{dq}{dx} \left(\frac{\partial^2 g_q(x,h)}{\partial h^2} + x \left(\frac{\partial g_q(x,h)}{\partial h} \right)^2 \right)$$
$$F[q] = \frac{1}{2}\beta \int_0^1 dx \left(1 - q(x)^2 \right) - g_q(0,0)$$

 $f(\beta) = \max_{q(x)} F[q]$

This formula was found using replica approach. We need to compute

$$-\beta N f(\beta, N) \equiv \overline{\ln(Z)(\beta, N)}$$

while it is simple to compute for integer n:

$$f(n;\beta,N) = -\frac{\log\left(\overline{Z(\beta,N)^n}\right)}{\beta Nn} \qquad \lim_{n \to 0} f(n;\beta,N) = f \; .$$

Nicola d'Oresme trick (1353). Starting form the definition of A^n ,

$$A^{1/2} = \sqrt{A}, \qquad \ln(A) = \lim_{n \to 0} \frac{A^n - 1}{n}$$

After some algebra and Gaussian integrations we find the exact formula

$$\exp(-\beta nNf(n;\beta,N)) = \int dQ \exp(-\beta NnF[Q])$$

$$nF[Q] = -\frac{1}{2}\beta \operatorname{Tr} Q^2 + \beta^{-1} \log \left(\sum_{\{\sigma\}} \exp \left(\sum_{a,b} Q_{a,b} \sigma_a \sigma_b \right) \right)$$

The matrix Q is symmetric, zero on the diagonal $(Q_{a.a} = 0)$. We have n variables σ_a that takes the value ± 1 .

The integral is done on $\frac{n(n-1)}{2}$ variables.

Symmetries The symmetry group is S_n . If π is a permutation

$$(Q^{\pi})_{a,b} = Q_{\pi(a),\pi(b)} \qquad F[Q^{\pi}] = F[Q]$$

The proof is trivial:

$$nF[Q] = -\frac{1}{2}\beta \operatorname{Tr} Q^2 + \beta^{-1} \log \left(\sum_{\{\sigma\}} \exp \left(\sum_{a,b} Q_{a,b} \sigma_a \sigma_b \right) \right)$$

$$\sum_{\{\sigma\}} \exp\left(\sum_{a,b} Q_{a,b}^{\pi} \sigma_a \sigma_b\right) = \sum_{\{\sigma\}} \exp\left(\sum_{a,b} Q_{a,b} \sigma_{\pi(a)} \sigma_{\pi(b)}\right) = \sum_{\{\sigma\}} \exp\left(\sum_{a,b} Q_{a,b} \sigma_{\pi(b)} \sigma_{\pi(b)}\right)$$

Point of maximum for $N \to \infty$.

$$\exp(-\beta n N f(n,\beta,N)) = \int dQ \exp(-\beta N n F[Q])$$
$$f(n,\beta) \equiv \lim_{N \to \infty} f(n,\beta,N) = F[Q^*] = \min_Q F[Q]$$

We can compute f(n) on the integers: the maximum is at $Q_{a,b}^* = q$, $\forall a, b$, i.e. the only matrix left invariant by the whole permutation group. We compute everything for integer n and we perform an analytic continuation at n = 0.

This gives a wrong result at high β . The function f(n) must have a singularity at 0 < n < 1: e.g.

$$f(n) = 0$$
 for $n > \frac{1}{2}$; $f(n) = \left(n - \frac{1}{2}\right)^5$ for $n < \frac{1}{2}$

Putting the finger on the origin of troubles.

If F[Q] has minimum at Q^* we must have

$$\frac{\partial F[Q]}{\partial Q_{a,b}} = 0 \qquad \mathcal{H} \ge 0 \qquad \mathcal{H}_{a,b;cd} \equiv \frac{\partial^2 F[Q]}{\partial Q_{a,b} \partial Q_{c,d}}$$

The non-negativity of the Hessian $(\mathcal{H} \ge 0)$ is supposed to be equivalent (also for non-integer n) to:

The spectrum of \mathcal{H} is non-negative.

At high β the analytic continuation of the spectrum of \mathcal{H} acquire a negative part for $0 < n < n^*(\beta)$: the de Almeida Touless instability.

A bold approach: we do the maximum point approximation at n = 0! This lead to a strange mathematics: one introduces a is $n \times n$ matrix Qand the symmetry group is S_n : eventually $n \to 0$.

If π is a permutation

$$(Q^{\pi})_{a,b} = Q_{\pi(a),\pi(b)} \qquad F[Q^{\pi}] = F[Q]$$

F[Q] has a minimum at Q^* . We call S^* the subgroup of S_n that leaves Q^* invariant i.e. the stabilizer subgroup (the little group).

$$S_n \supset S^*$$

If $S^* \neq S_n$ the (replica) simmetry group is "spontaneously broken".

Explicit construction non-symmetric Q*

$$Q_{a,b}^* = q_1$$
 if $I(a/m) = I(b/m)$ $Q_{a,b}^* = q_0$ if $I(a/m) \neq I(b/m)$.
 $Q_{a,a} = 0$.

i.e. n objects are divided into n/m classes of m elements. The little group corresponding to Q^* is

$$S^* = S_{n/m} \otimes (S_m)^{n/m}$$

When $n \to 0$, $S_{n/m} \to S_0$ so that $S_0 \supset S_0$. S_0 is an infinite group! The new estimate is (all functions depend also on β)

$$f_1^{RSB} = \max_{q_1, q_0, m} f(q_1, q_0, m)$$

The minimum is at m^* with $0 < m^* < 1$. The old result f_0^{RSB} is given by

$$f_0^{RSB} = \max_q f(q, q, m)$$
 $f(q, q, m)$ does not depend on m

In a recursive way $(S_0 \supset S_0)$ we can define $f_k^{RSB}(\beta)$ in such a way that

$$f_0^{RSB} \le f_1^{RSB} \le f_2^{RSB} \dots \le f_k^{RSB} \dots \le f_\infty^{RSB} \equiv \lim_{k \to \infty} f_k^{RSB}$$

In 1979 it was conjectured that $f_{\infty}^{RSB} = f$. In 2002 Guerra proved that $f_k^{RSB} \leq f \forall k$. Less than one year later Talagrand twisted Guerra proof to prove that $f \leq \sup_k f_k^{RSB}$. Hence

$$f_{\infty}^{RSB} \le f \le f_{\infty}^{RSB} \longrightarrow f_{\infty}^{RSB} = f$$

Can the replica derivation sligtly modified in such a way that it makes sense?

It should **not** involve sets whose cardinality is a non-integer real number !!!

Here I present a computation of $\tilde{f} \equiv \max_{q,m} f_1^{RSB}(q,0,m)$ that correspond in replicas to

 $Q_{a,b}^* = q$ if I(a/m) = I(b/m) $Q_{a,b}^* = 0$ if $I(a/m) \neq I(b/m)$.

for non-integer m (following Campellone, G.P. and Virasoro, inspired from Derrida).

I will start with writing some identities. I will exchange limits with integral, I will treat non convergent asymptotis series as convergent, but these are minor sins! The cardinality of sets will always be an integer number.

$$\overline{\ln Z_N} = \int_0^\infty \frac{dt}{t} \left(\exp(-t) - \overline{\exp(-tZ_N)} \right)$$

Let us define

$$\exp(-\phi(t,N)) \equiv \overline{\exp(-tZ_N)} = \sum_{k=0,\infty} \frac{1}{k!} (-t)^k \overline{Z_N^k}.$$

 $\overline{Z_N^k} = \int dQ \exp(-NF(k,Q))$, the integral is done over $k \times k$ matrices. At the end of the game we have to evaluate $\exp(-\phi(t,N))$ for very large t.

We need a very good control of Z_N^k :

$$\overline{Z_N^k} \approx \exp(-NF(k,Q^*)) \qquad F(k,Q^*) \equiv \min_Q F(k,Q)$$

gives the wrong replica symmetric result!

A different approximation could be to sum over all the critical points:

$$\overline{Z_N^k} \approx \sum_j \exp(-NF(k, Q_j^*)) \qquad \left. \frac{\partial F(k, Q)}{\partial Q_{a,b}} \right|_{Q_j^*} = 0$$

All critical poins are beyond my command. I will make an arbitrary selection:

We partition the set of k elements into l sets of size m_i , where $\sum_{i=1}^{l} m_i = k$. (Here l is the total number of blocks of the matrix.) The off diagonal elements, i.e. Q_{ab} , have a constant value q_i if a and b belong to the same set. Q_{ab} is zero if a and b do not belong to the same set.

If we we take all the $m_i = m$ and $q_i = q$ we recover the replica computation for $q_1 = q$ and $q_0 = 0$. Here we stick to integer m_i ! In this way each stationary point of this kind depends is characterized (apart from permutations) the size of the blocks m_i and by the values of q_i that are a function of the m_i . After some algebra we get

$$-\phi(t,N) = \sum_{m=1}^{\infty} \frac{(-t)^m}{m!} \exp(mNf(m))$$
.

When $N \to \infty$ we need to evaluate the previous formula when t goes to to ∞ at constant $y = \ln t/N$: t is very large, i.e. $O(\exp(yN))$. We can transform the previous sum into an integral in the complex plane

$$-\phi(t,N) = \frac{1}{2i} \int_{\mathcal{C}} dm \frac{\exp(N(my + mf(m)))}{\Gamma[1+m]\sin[\pi]}$$

where $y = \ln t/N$ and C is an appropriate integration path in the complex plane and crosses the real line for 0 < x < 1.

We deform the path C to a new path going from $-i\infty$ to $+i\infty$ crossing the real line for 0 < m < 1.

We look for a saddle point in the complex plane. The equation for the saddle point (i.e. m_{sp}) is

$$f(m_{sp}(y)) + m_{sp}(y)f'(m_{sp}(y)) + y = 0.$$

Let us assume, for simplicity that $0 < m_{sp} < 1$. In this case we have at the leading order

$$\phi(t, N) \approx \exp\left(Nm_{sp}(y)(y + f(m_{sp}(y)))\right)$$

where

$$f'(m_{sp}(y)) = 0 ,$$

After computing the integral on t and after some simple estimates we recover the result of the replica approach.

Crucial points!

$$-\phi(t,N) = \sum_{m=1}^{\infty} \frac{(-t)^m}{m!} \exp(mNf(m)) = \frac{1}{2i} \int_{\mathcal{C}} dm \frac{\exp(N(my + mf(m)))}{\Gamma[1+m]\sin[\pi]}$$

- We have a function f(m) that we can write in an explicit way and we continue it from integer to non-integer values.
- We use this analytic continuation to write the result as a complex contour integral.
- We estimate the integral with the saddle point method.
- In a simple case, we can do the computation and we obtain the replica result.

Two conjectures:

• If
$$\overline{Z_N^k} \equiv \int d\mu_N(Z) Z^k = \int dQ \exp(-NF(k,Q))$$
, for $t = O(\exp(yN))$
$$\overline{\exp(-tZ_N)} = \sum_{k=0,\infty} \frac{1}{k!} (-t)^k \overline{Z_N^k} \approx \sum_{k=0,\infty} \sum_{j=1,C(k)} \frac{1}{k!} (-t)^k \exp(-NF(k,\tilde{Q}_j^k))$$

The sum on j runs over all the (C(k)) critical points (\tilde{Q}_j^k) of F(k,Q).

• If we use the previous formula together with

$$\overline{\ln Z_N} = \int_0^\infty \frac{dt}{t} \left(\exp(-t) - \overline{\exp(-tZ_N)} \right)$$

we get the replica broken result for $\lim_{N\to\infty} N^{-1} \overline{\ln Z_N}$!