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Introduction



Quantum field theory

• In quantum physics the physical degrees of freedom are
represented in a non commutative algebra of operators on a
Hilbert space.

• In a naive Ansatz, quantum fields are thought of as operator
valued functions, but due to unavoidable singularities a better
concept is that of operator-valued distributions (Gårding and
Wightmann, 1964).

• This allows a precise formulation of a quantum field theory
with linear equations (free fields).
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• The commutation relations of a free scalar field

[ϕ(x), ϕ(y)] = i∆(x− y) ,

can be understood in terms of operator-valued distributions as
a relation in a unital algebra (f, g ∈ D(M))

[ϕ(f), ϕ(g)] = 〈f,∆g〉1

• and the Klein-Gordon equation holds in the sense of
distributions

ϕ((�+m2)f) = 0 .

Fundamental Question
How can nonlinear relations between fields be formulated?

3



• The commutation relations of a free scalar field

[ϕ(x), ϕ(y)] = i∆(x− y) ,

can be understood in terms of operator-valued distributions as
a relation in a unital algebra (f, g ∈ D(M))

[ϕ(f), ϕ(g)] = 〈f,∆g〉1

• and the Klein-Gordon equation holds in the sense of
distributions

ϕ((�+m2)f) = 0 .

Fundamental Question
How can nonlinear relations between fields be formulated?

3



Wick’s ordering for Wick’s polynomials

A formal solution to the problem is known on Minkowski spacetime
since long (Gian-Carlo Wick, 1950) by Wick’s ordering, namely we
decompose the field in terms of creation and annihilation operators
on Fock space

ϕ(x) = a†(x) + a(x)

and define the Wick’s ordered powers of the field as follows

:ϕn(x) :=
n∑
k=0

(
n
k

)
a†(x)ka(x)n−k

Gårding and Wightmann (1964) proved that these are well defined
operator-valued distributions with a dense domain DGW on Fock
space.
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Functional Properties of Wick’s polynomials

However, functional properties are largely unknown (in 4d).

One would like, for instance, to know whether Wick’s powers :ϕn: (f)
are essentially selfadjoint operators for real f on some domain
(Wightman, and Langerholc, Schroer 1965, ).

For n = 1 this is easily done (essentially selfadjoint), but already for
n = 2 one needs some work (Sanders, 2012). For n > 2 functional
properties are largely unknown.

Invoking PCT transformation one learns at least that they all have
equal defect indices (0 or∞) (Driessler, Summers, Wichmann, 1986,
or Buchholz, Fredenhagen, private communication), so they have
selfadjoint extensions, or by enlarging the Hilbert space one gets
extensions as well (Borchers, Yngvason, 1991).

But, besides selfadjointness several other crucial questions
remained open...
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Open Questions

OQ1. When do the spectral projections relative to spacelike
separated test functions commute? (Einstein causality)

OQ2. How are the extensions compatible with the linearity of the
field on the test functions?

OQ3. What is the relation with the Weyl C∗-algebra (or the
Buchholz-Grundling resolvent algebra) generated by the field
W(f) = eiϕ(f)?
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Math for the Wick’s polynomials
on a natural invariant domain



Natural and invariant domain Dµ

How do we mathematically define Wick’s powers?

Let (Hω, πω,Ωω) be GNS rep. for the vacuum ω over the Weyl algebra
W(M) of the free scalar field (massive or massless) in Minkowski 4d
spacetime, with the usual relations.
Consider the following nonlinear map, (W(f) ∈ W(M))

D(M) 3 f 7→ Gφ(f)
.
= e 1

2ω2(f,f)πω(W(f))φ , φ ∈ Hω .

Definition (Smooth maps)
We define Gφ to be infinitely differentiable (at 0) whenever it is
continuous and the following maps (functional derivatives)

δkGφ

δfk
[0] : D(M)× · · · × D(M)︸ ︷︷ ︸

k-times

7→ C

exists and are symmetric, k−linear and continuous in the respective
topologies for any natural k ≥ 1 (hence they are distributions!)
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Natural and invariant domain Dµ

For our case we define, in the sense of distributions (valued in Hω),

δkGφ

δfk
[0](x1, . . . , xk)

.
= ιk :ϕ(x1) · · ·ϕ(xk) : φ .

Definition (Microlocal domain of smoothness)

φ ∈ Hω is in Dµ if f 7→ Gφ(f) is infinitely differentiable (at 0 for
instance) and the distributions δkGφ

δfk [0] have wave front sets as (for
any k ≥ 1)

WF
(
δkGφ

δfk
[0]

)
⊆ {(x1,p1; · · · ; xk,pk) ∈ Ṫ∗Mk | pj ∈ V+ , j = 1, . . . , k}
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Results

Let me describe the simplest results.

“The distributions δ
kGφ

δfk
[0] can be restricted to all diagonals”

hence all Wick’s polynomials can bemathematically defined
as operator-valued distributions on Dµ

“Dµ is a dense and invariant domain under applications of
Wick’s polynomials and Weyl elements”

“Ifψ ∈ Hω induces a quasifree Hadamard state thenψ ∈ Dµ”

“C∞(H) is a core for (:ϕk:,Dµ)”

Notice: Crucial that, by the third result, Dµ depends only on the
representation and not the state ω (cyclic vector).
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Positive Wick’s polynomials



Positivity

We know that a positive power of (any) Wick’s monomial does not
mean that the operator is positive (in Hilbert space), for instance
:ϕ2(f): is never a positive operator even if f is a nonnegative test
function! (Epstein, Glaser, Jaffe, 1965) The reason is simple, we know
that

〈Ωω, :ϕ
2(f): Ωω〉 = 0

but :ϕ2(f): Ωω 6= 0. Hence, the following function

R 3 λ 7→ F(λ) = 〈(1+ λ :ϕ2(f):)Ωω, :ϕ
2(f): (1+ λ :ϕ2(f):)Ωω〉

has a zero F(0) = 0 but F′(0) = 2‖ :ϕ2(f): Ωω‖2 > 0, hence F(λ) gets
negative values!

One possible consequence is that the energy density is no longer
positive, and the positive energy condition of general relativity does
not hold anymore, hence we may get exotic spacetimes (wormholes,
warp drives, etc...)
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Quantum Inequalities

However, not everything is lost.

The negative parts are restricted by
the so-called “Quantum Inequalities” (Ford 1991; Ford, Roman, 1995;
Fewster, Eveson 1998; Fewster, 2000), in the previous case one finds

:ϕ2(f2): ≥ −C(f)

for f ∈ D(M,R).

But, let me generalize this a bit!

Using Borchers (1960) we know that it is sufficient to restrict the
attention to the time axis, hence we define with f ∈ D(R,R),

ϕ(f) =
∫
dt ϕ(t, ~0) f(t) ,

(otherwise, use microlocal arguments...).
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Example: ϕ4

Consider the fourth power :ϕ4(f2): (massive case)

The crucial trick is that the two-point massless function dominates,
as a positive distribution, the massive two-point function, i.e.

D+(g, g)k ≥ ∆+(g, g)k , g ∈ D(R,C) , k ∈ N,

plus the symmetry of the Wick’s product, Wick’s Theorem, some
distributional identities, microlocal arguments, and the explicit
form of the two-point functions, at the end one obtains (c0, c1 > 0)

A4(f)
.
= :ϕ4(f2): +c0

∫
dt :(∂t(ϕ(t)f(t)))2: +c1

∫
dt ḟ(t)2 ≥ 0

With more work and pain, it is also true that for any even power that
(ck > 0)

A2n(f)
.
=

n∑
k=0

ck
∫
dt :

(
∂kt [ϕ

n−k(t)f(t)]
)2
:≥ 0 ,

is a positive operator on Dµ! However, they are not Wightmann
fields...
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Modification of the Wightmann framework

We modify the Wightmann framework a bit:

let us consider
nonlinear maps with values on positive operators on a Hilbert space

D(M,R) 3 f 7→ A(f) ≥ 0

such that they satisfy the following additive relation

A(f+g+h) = A(f+g)−A(g)+A(g+h) , when supp(f)∩supp(h) = ∅ .

Additivity is equivalent to being simply localized, i.e., can be written
as a finite sum of additive maps but localized in arbitrarily small
regions (as it happens for the linear case by partition of unity).

13
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Examples and Extensions

• The operator construction of Wick’s polynomials on Dµ seen
before gives examples of such additive (and local) nonlinear
maps into positive operators.

• Since they are symmetric operators they admit extensions that
are selfadjoint and positive.

• However, what it is not yet clear is whether any of the
extensions still satisfies additivity.

• Even in the case of the Friedrichs extension the situation does
not seem to be clear...

Something more refined is necessary!
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Quadratic form construction



First steps

Consider the massless situation first and define

af(φ, φ) =
1
π

∫ ∞

0
dα

∥∥∥∥ :ϕn(fα) :n! φ

∥∥∥∥2
where fα(t) = f(t)eiαt.

By some straightforward manipulations (similar to those seen
before) we get that

af(φ, φ) = 〈φ,A2n(f)φ〉 !!!

So, we get back to the operators we constructed earlier but for the
massless field. But since the quadratic form is symmetric, positive
by definition, closable (since defined via a symmetric linear
operator), if we consider its closure, then it has a unique selfadjoint
and positive extension, hence there exists a unique selfadjoint and
positive operator inducing that form. Since the operator A2n is
additive, is the extension (via the form) A2n also additive?
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Form additivity

Clearly, additivity should hold in the sense of forms, namely, for any
extended non linear map f 7→ A(f) into positive and selfadjoint
operators (Wick’s polynomials), one wishes that

A(f+ g+ h)u A(g) = A(f+ g)u A(g+ h) .

This is not yet completely proven, however, but we are working on it.

Let me continue nonetheless to show you how to construct the
same class of objects in the massive case.

The problem is that if we strictly repeat the same calculations done
previously we end up with nonlocal polynomials due to the form of
the two-point function in the massive case, for instance, we saw the
bound of Fewster for the square of ϕ and its form is the following,
written in terms of the integration over α

C(f) = const.
∫ d3~k
2ω(~k)

∫ ∞

0
dα |̂f(ω(~k) + α)|2 , ω(~k) =

√
|~k|2 +m2 ,

which is certainly nonlocal!
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Ansatz

We use then the following Ansatz for the quadratic form
construction
n∑
k=0

1
π

∫ +∞

0
dα Cn−k(α)

∣∣∣∣∫ dt : ϕ
k(t) :
k! f(t)eiαt

∣∣∣∣2 =
n∑
l=0

1
π

∫ +∞

0
dα α2l

(2l)!(2π)2l

∫∫
dtdt′eiα(t−t

′)f(t)f(t′) : ϕn−l(t)ϕn−l(t′) :
(n− l)!2

and look for positive functions Ck(α) satisfying the Ansatz.

The calculation is easy and the result is

Ck(α) =
1

(2π)2k

∫
· · ·

∫
∑k

j=1 ωj≤α

ωj≥m

ω1 · · ·ωk−1
(
ωk −

√
ω2k −m2

)
dω1 · · ·dωk ,

and we get positive quadratic forms for even Wicks’ polynomials
that are additive also for the massive case. We can further
generalise these constructions to odd Wick’s polynomials, for
instance.
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Some further results

I have yet to answer two of the open questions seen at the
beginning.

Theorem
The selfadjoint extension A(f) commutes with the Weyl operator
W(g) if supp(f) is spacelike to supp(g)

From Haag duality for the von Neumann algebras A(O), for a
diamond O, generated by elements W(g) with supp(g) ⊂ O one gets

Theorem
The selfadjoint extension A(f) is affiliated with the von Neumann
algebra A(O) when supp(f) ⊂ O

Eventually:

Theorem
Spectral projections for the selfadjoint A(f) and A(g) commute for
spacelike separated f and g
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Conclusions and Outlook



Review of results

R1 We showed a natural and invariant domain for all Wick’s
polynomials

R2 We construct positive operators that satisfy additivity as a
substitution of linearity

R3 We hinted at a construction, using the technology of forms, of
prospective selfadjoint and positive Wick’s polynomials
satisfying additivity, and some natural properties w.r.t. Einstein
causality and affiliation to Weyl algebras

R4 We have generalized Fewster-Ford-Roman quantum
inequalities, at least on Minkowski spacetime.
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Open problems and applications

A short list of open problems follows:

O1 The main open problem is to find a procedure that avoids the
direct use of the form of the two point functions of Minkowski
spacetime

O2 Find whether the Friedrichs extensions do satisfy additivity
O3 Make precise the domain’s problem for the quadratic forms
O4 Develop the announced modification of the Wightmann

framework

One may envisage applications to the following problems:

A1 Spacetime coordinates for events
A2 A version of resolvent algebra of Buchholz-Grundling tailored

for positive and selfadjoint Wick’s polynomials
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Thank you!
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