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What is entanglement?

Entanglement

Entanglement concerns subsystems (usually two, called A and B) of an
ambient system. Roughly, one asks how much “information” one can extract
about the state of the total system by performing separately local,
coordinated operations in A and B.



Abstractly, the typical setup for (bipartite) entanglement is as follows:
Setup

Two commuting v. Neumann algebras 2( 4, 25 defined on common Hilbert
space H with unitary identification 24 V 2Ap = A4 ® Ap.

Example 1: 2[4 = M,,(C) = 2p realized on Hilbert space H = C" @ C"
with standard inner product. States of the system correspond to vectors or
density matrices on H. (“Type | case”)

Example 2: 24 = L>®°(X),Ap = L>*(Y): Classical situation. Probability
distributions p € L'(X x Y) give states.
Example 3: Let A, B C R and 2 4, Ap the algebras of observables of a

quantum field theory localized in corresponding “causal diamonds”
O4,0p C R%L, (“Type lll case”)



Localization in QFT

In QFT, systems are tied to spacetime localization, e.g. system A

Y

time slice = Cauchy surface C C

Figure: Causal diamond O 4 associated with A.

Set of observables measurable within O 4 is an algebra 2[4 = “quantum fields
localized at points in O 4”. If A and B are regions on time slice (Einstein
causality) [Hasg, Kastler 1964]

[2A4,25] = {0} .
The algebra of all observables in A and B is called 2[4 V 25 = v. Neumann
algebra generated by 204 and Up.



What is entanglement?

Abstract version of states:

Given an abstract v. Neumann algebra 2[4 V 2(p = 24 ® 2p, states are
positive normalized, normal linear functionals w on 204 ® 2.

Example 1: 24 = M,,(C) = Ap. All states of form w(a) = Try/(p,a) for
density matrix p,, on H = C" @ C".

Separable states:

A state is called separabile if it is a finite sum of the form w = ) w4; @ wp;
where w4; ® wpi(a ® b) = wy;(a)wpi(b) is normal (product state).

Example 2: 24 = L>(X),Ap = L*(Y): Basically every state
p € LY(X x Y) is a limit of separable states.

Remark: Normal product states will sometimes not exist (see below)!



What is entanglement?

Example 2 motivates:
Entangled states

A state is called entangled if it is not in the norm closure of separable
states.

Example 1: 24 = M3(C) = Ap spin-1/2 systems, Bell state p = |Q2)(Q]
) =2712(10) ® 10) + 1) @ |1)).
is (maximally) entangled.

Example 2: Type I,,: A4 = M,,(C) = 2Ap:
) =n"12 1) @)
J

Example 3: Type I.:

Q) = Zﬂ_l/2 Z e PEil?|j) @ |7)  (— KMS condition)
J



Situation in QFT

Unfortu nately [Buchholz, Wichmann 1986, Buchholz, D*Antoni, Fredenhagen 1987, Doplicher, Longo 1984, ... &
[A4,Ap] = {0} does not always imply A4 VA = A, @ Ap .

This will happen due to boundary effects if A and B touch each other
(algebras are of type 111, in Connes classification):

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no
separable states, and no basis for discussing entanglement!

b) If A and B do not touch, then there are no pure states (without
firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety
corridor between A and B, and we must accept b).



What to do with entangled states?

Now and then:

Then: EPR say (1935) Entanglement = “spooky action-at-a-distance”
Now: Entanglement = resource for doing new things!

Example: Teleportation of a state |3) = cos g\O> + €' sin g|1) from A to

B. [Bennett, Brassard, Crepeau, Jozsa, Perez, Wootters 1993].

Qan transmit
00, 01, 10, \\

Figure: Teleportation of one ¢-bit.



Quantum teleportation

Basic lessons:

» To teleport one “¢-bit” |5) need one Bell-pair entangled across A and
B! = For lots of g-bits need lots of entanglement.

» Teleportation “protocol” consists of sequence of separable
operations and classical communications (see below). These “use up”
the entanglement of the original Bell-pair.



When is a state more entangled than another?

In type I, situation, a channel is:

» Time evolution/gate: unitary transformation: F(a) = UaU*

» Ancillae: n copies of system: F(a) = 1cn ® a

» v. Neumann measurement: F(a) = PaP, where P : H — H'
projection

» Arbitrary combinations = completely positive (cp) maps istnespring 1955]

In general case, channel is a normalized F(1) = 1, normal, cp map.
(F : 9 — My cp < 12 @ F positive.) Bipartite system:

Separable operations (“= channels + classical communications”):

Normalized sum of product channels, > F4 ® Fp acting on operator
algebra 24 ® Ap



Entanglement measures

Basic properties:
Definition of entanglement measure E:

A state functional w — E(w) on A4 ® A such that
> (el) E(w) > 0.

> (e2) F(w) = 0 & w separable.
> (e3) Convexity > piE(w;) > E(D_ piw;).

> (e4) No increase “on average” under separable operations:

sz w) < E(w)

for all states w (NB: p; = F;w(1) = probability that i-th separable
operation is performed)

> (e5) Multiplicative under tensor product
> (e6) Strong superadditivity.



Examples of entanglement measures

Example 1: Relative entanglement €NLropy [Lindblad 1972, Uhmann 1977, Plenio, Vedral 1998,..]:

Er(w)= inf H(w,o).

o separable

Here in type | case, H(w, o) = Tr(p, In p, — pu In p,) = Umegaki’s relative
entropy. General v. Neumann algebras (arai 197051, see below.

Example 2: Distillable entanglement rains 2000;:
Ep(w)=1In <max. number of Bell-pairs extractable

via separable operations from IV copies of w) /copy

Example 3: Mutual information [schrsdinger]:

Er(w) = H(w,wa ® wp) (1

where wy = w | A4 etc.



Examples of entanglement measures

Example 4: Bell correlations (el 1964, Tsirelson 1980, Summers & Werner 1987 ..]

Example 5: Logarithmic dominance (s & sanders 2017, Datta 2009]:

En(w)=1In (inf{||aH |o>w, o separable})

Example 6: Modular entanglement [sH s sanders 20171:

Bar(w) = In (min(([ 41, [ 95]1) ) @
where U4 : 24 — H given by a — A/4a|Q), |Q) is the GNS-vector
representing w and A is the modular operator for the commutant of 25

(Here || . ||1 is the 1-norm of a linear map.)

Many Other eXamPIeS [Otani & Tanimoto 2017, Christiand| et al. 2004, ]!



For one has basic fact [ponald, Horodecki, Rudolph 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with relative
entanglement entropy.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!



Some relationships [SH & Sanders 2017]

Measure | Properties | Relationships E(w;)
Ep oK V2
Ep oK Ep < Er,En,EnN, Er Inn
ERr OK Ep < Ep<En,Ey,FEr|Inn
EN OK EDaERSEN SEM Inn
Eyv mostly OK | Ep, Er, Exy < Ey Slnn
Er some OK | Ep,Er < Ej 2Inn

(Here w,"=Bell state from Example 2)



Modular theory |

Modular theory is a key structural tool in v. Neumann algebra theory. If 0t is
a v. Neumann algebra on # with cyclic and separating vector |(), then one
defines S as (a € M),

S,a|Q) = a*|Q), S, = JAY? polar decomposition. (3)

Similarly, given two such states, one defines S, ,ya|Q') = a*|(2), with
corresponding polar decomposition (— relative modular operator).

Modular (Tomita-Takesaki-) theory

The structural properties of A (modular operator) imply many properties of
the corresponding entanglement measures such as Eyy, ER, Fy.



Modular theory Il

Modular theory

Some structural properties of A (modular operator):

l. oy(a) = A%aA~" leaves 9 invariant. In QFT, if M = 2A(O) for certain
special O, w = vacuum, then o generates the action of spacetime
SYmMmetries [Bisognano & Wichmann 1976, Hislop & Longo 1982, Brunetti, Guido & Longo 1993].

2. w s ||A%af]|? is a concave functional on states for 0 < o < 1/2
(WYDL concavity).

3. f My C My then A < A (Lowner’s theorem)

4. KMS-property: z — w(ao,(b)) can be extended to an analytic function
in strip 0 < &(2z) < 1 and the boundary values satisfy

w(aoyyi(b)) = w(oy(b)a).

There are similar properties for the relative modular operator. The relative
entropy is related by

H(w,w') = (QInA, Q).



Some results

Some results [sH & sanders 20171

I. d+ 1-dimensional CFTs

An exact result in 1 + 1 CFT [Longo & Xu 2018, Casini & Huerta 2009]
Locality of entanglement st 2018 (o appear)]

Origin of “area law”

Exponential decay

Charged states

N o Uk w D

1 + 1-dimensional integrable models



Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

_ 2 _ 2
u= (zB+ fo)Q(CUAJr fo)Q >0
(a- —xp-)*(Ta+ — TB+)

(v similarly) and set



Upper bound

For vacuum state wy in any 3 + 1 dimensional CFT with local operators {O}
. . . GL,R
of dimensions do and spins Sy

EM(W()) <In Z e~ Tdo [25(]; T 1],9[25(% I 1]9 ,
@

with [n]y = (e"0/2 — ¢=18/2) /(ef/2 — ¢=0/2),

For concentric diamonds with radii
R > r this gives

au )
i Er(wo) < Epm(wo) S No (%) ,

where O = operator with the
smallest dimension d» and Ny = its
Figure: The regions A and B. multiplicity.

Tools: Hislop-Longo theorem, Tomita-Takesaki theory



Exact result in |+1

An exact result was recently obtained by [Long & xu 20181 building on previous
ideas Of [casini & Huerta 2009, Calabrese, Cardy, Tonni 2009/111. T hey prove rigorously that for a
free Dirac field on a lightray (or related theories via canonical constructions
in CFT):

Free fermions

For A, B = union of disjoint intervals, dist(A, B) > 0, one has
c
Er(w) = —glnu

where wu is the analogue of the conformally invariant cross ratio (on light ray),
and where wy is vacuum (and ¢ = 1/2 for free fermion).

As a consequence, Er(wo) < —§Inu.
Ingredients of proof: CAR, Kosaki-formula, ...



Locality of entanglement |

Consider regions B, C' touching at the
. origin of Minkowski. A C B"isa
04—1T diamond of radius < 1 whose
- center is at distance = 1 away from
origin. AA = scaled diamond.
Assume: QFT has scaling limit which

isa CFT.
Figure: The regions A, B, C.

Theorem [SH in preparation]

If & is the largest eigenvalue of the extrinsic curvature tensor of 0B where B
and C touch, then as A — 0,

Ey(waagc) — Ev(wasass)| < cst. (k‘)\)% Zcpr(T = cosh™! 7‘_1)

for some explicit constant.



Locality of entanglement |

Consider regions B, C' touching at the

origin of Minkowski. A C B"isa

s diamond of radius < 1 whose
center is at distance = 1 away from
origin. AA = scaled diamond.
Assume: QFT has scaling limit which

isa CFT.
Figure: The regions A\A, B, C.

Theorem [SH in preparation]

If & is the largest eigenvalue of the extrinsic curvature tensor of 0B where B
and C touch, then as A — 0,

Ey(waagc) — Ev(wasass)| < cst. (k‘)\)% Zcpr(T = cosh™! 7‘_1)

for some explicit constant.



Locality of entanglement |

Remark: | conjecture that upper bound is optimal. If B and C' touch at a
point of a bifurcate Killing horizon, then upper bound is same with only
change (kA)2 with x the surface gravity of bh.

bifurcation surface

Figure: Spacetime with bifurcate Killing horizon.



Locality of entanglement |l

How might one prove such a theorem? At the heart of the proof is the
following general result (for a related result see [fredenhagen 1985]):

Ke)’ Iemma [SH in preparation]

Let My C My with common cyclic and separating |(2). Assume
oa.(a) € My for |t| < 1 for some a € M. Thenfor 0 < o < 1/2,

0 < |ASa?® — |ASaQ? < cst. (14 77)e ™ ||ASaf|? “4)
for some explicit constant dep. on a.

The proof of the theorem is obtained by combining this lemma with:

» The Bisognano-Wichmann theorem, choosing C' to be a half-plane and
My = A, My = A5, Then 7 ~ |In(kN)|/27 can be estimated for
a € Ay 4 since modular flow of C' has geometric nature.

» Basic properties of the nuclear |-norm.

» Previous estimates of Ej; in CFTs.



Free massive QFTs

A and B regions in a static time

slice in ultra-static spacetime, ¢
ds? = —dt? + h(space); lowest (é
energy state: wy. Geodesic

distance: r Figure: The the systems A, B

Upper bounds (decay + area law)
Dirac field: As r — 0

Er(wo) < cst.| In(mr)| Z = /(M a;

j>d-1

where a; curvature invariants of A. Lowest order —> area law.
Klein-Gordon field: As r — oo decay

Er(wp) < cst.e™™/?

(DlraC: [Islam, SH & Sanders])



Proof of exponential decay:

|. First show that

~4) Trin(1 - |(1 - Qp¢)Qazl?)

+

for certain projection operators onto subspaces of L?(C) associated w/
A, B’ (— modular theory).

2. Then show that the estimation boils down to that of operator norms
IC*xaCP (1 = x5)|

where C' = (=V2 4+ m?)~1, where a, 3 € R (depending on the

dimension). x 4 is a smoothed out indicator function of A, similarly B.
3. Use “finite propagation speed” (refferman ecal. 1986] property of

exp it(— V2 + m?)1/2 and Fourier representation

(X2 + N2 = [dtf(t) ¢X . Integration range for ¢ effectively cut off to

|t| > r. = exponential decay in r.



We expect our methods to yield similar results to hold generally on
spacetimes with bifurcate Killing horizon:

bifurcation surface

Figure: Spacetime with bifurcate Killing horizon.



Charged states

A and B regions, w any normal 5
state ina QFT ind + 1 dim. .

X*w state obtained by adding @> e
“charges” x in A or B.

Figure: Adding charges to state in A

Upper bound

0 < Ep(w) — Er(x <1an1m D
n;: # irreducible charges x; type ¢, and

dim(y;) = quantum dimension = \/Jones index

Remark: Same inequality for E);.

Index-statistics theorem [Longo 1989/90], Jones subfactor theory, Pimsner-Popa-inequality, Doplicher-Haag-Roberts theory; Naaijkens talk



Example: d = 1, Minimal model type (p,p + 1), x irreducible charge of
type (n,m)

sin (2T gip | ZER
* () sim (53
B (T 2

Example: d > 1, general QFT, irreducible charge x with Young tableaux
6[5]4[2]1]
31211 .

statistics

‘P—‘CHOO

0 < Er(w) — Er(x*w) < 21Inb5,945, 940



Area law in asymptotically free QFTs

A and B regions separated by a

B/ B
thin corridor of diameter € > 0 %%g
in d + 1 dimensional Minkowski A// I >

spacetime, vacuum wg =
vacuum. Figure: The the systems A, B

Result (“area law”)

Asymptotically, as ¢ — 0

Dy oA/ d> 1,
Egr(wo) 2 {DQ_Inm'm(lfHBl) d=1,

where Dy = distillable entropy Ep of an elementary “Cbit” pair

Tools: Strong super additivity of E 5, bounds [Donald, Horodecki, Rudolph 2002], also [Verch, Werner 2005, Wolf, Werner

2001/06,HHorodecki 1999]



Integrable models

These models (i.e. their algebras 2 4) are constructed using an “inverse
scattering” method from their 2-body S-matrix, e.g.

2N+1 . ..
sinh # — i sin by,
0) = T T Tk
52(0) kHl sinh 6 + i sin by, ’

by [Schroer & Wiesbrock 2000, Buchholz & Lechner 2004, Lechner 2008, Allazawi & Lechner 2016, Cadamuro & Tanimoto 2016].
b; = parameters specifying model, e.g. sinh-Gordon model (N = 0).

-

Op O4

o
iy

Figure: The regions A, B.



Upper bound
For vacuum state wgy and mass m > 0:
Egr(wo) < Enr(wo) < cst.e™™ 1=k
for mr > 1. The constant depends on the scattering matrix S, and k > 0.

Idea of the proof: E) is related to the log of the |-norm of the linear map
Ay 3 a— AV4|Q) € A,

where A is the modular operator of B’. The corresponding modular flow
acts geometrically by Bisognano-Wichmann. In fact, the norm can be

estimated explicitly using an explicit construction of the operator algebras
A4, 2Ap on the Se-symmetric Fock space H, relying on techniques of fLechner

2008, Allazawi & Lechner 2016]



In this talk, | have
» Explained what entanglement is, and how it can be used.

» Explained what an entanglement measure is, and given concrete
examples

» Explained how entanglement arises in Quantum Field Theory, and why
there always has to be a finite safety corridor between the systems.

> Evaluated (in the sense of upper and lower bounds) a particularly
natural entanglement measure in several geometrical setups, quantum
field theories and states of interest.

» Given some idea how modular theory (Tomita-Takesaki theory) comes
in.
Worth further study: relation with the considerable literature on v.
Neumann entropy in the theoretical physics literature! Especially:
> 2d CFTs cakbrese, Cardy, Nozaki, Numasawa, Takayanagi,...
> 2d integrable models cakbrese, cardy, Doyon, ..
> Modular theory, c-theorems: casii Huers,..

> Holographlc methods Hubeny, Myers, Rangamani, Ryu, Takayanagi,...



