Entanglement Measures and Modular Theory

S. Hollands

UNIVERSITÄT LEIPZIG

mostly based on joint work with K Sanders

arXiv:1702.04924 [quant-ph]

Quantum Information and Operator Algebras

Rome 15.2.2017

Entanglement

Entanglement concerns subsystems (usually two, called A and B) of an ambient system. Roughly, one asks how much "information" one can extract about the state of the total system by performing **separately local**, **coordinated operations** in A and B.

Abstractly, the typical setup for (bipartite) entanglement is as follows:

Setup

Two commuting v. Neumann algebras $\mathfrak{A}_A, \mathfrak{A}_B$ defined on common Hilbert space \mathcal{H} with unitary identification $\mathfrak{A}_A \vee \mathfrak{A}_B \cong \mathfrak{A}_A \otimes \mathfrak{A}_B$.

Example 1: $\mathfrak{A}_A = M_n(\mathbb{C}) = \mathfrak{A}_B$ realized on Hilbert space $\mathcal{H} = \mathbb{C}^n \otimes \mathbb{C}^n$ with standard inner product. States of the system correspond to vectors or density matrices on \mathcal{H} . ("Type I case")

Example 2: $\mathfrak{A}_A = L^{\infty}(X), \mathfrak{A}_B = L^{\infty}(Y)$: Classical situation. Probability distributions $p \in L^1(X \times Y)$ give states.

Example 3: Let $A, B \subset \mathbb{R}^d$, and $\mathfrak{A}_A, \mathfrak{A}_B$ the algebras of observables of a quantum field theory localized in corresponding "causal diamonds" $O_A, O_B \subset \mathbb{R}^{d,1}$. ("Type III case")

Localization in QFT

In QFT, systems are tied to spacetime localization, e.g. system ${\cal A}$

Figure: Causal diamond O_A associated with A.

Set of observables measurable within O_A is an algebra $\mathfrak{A}_A =$ "quantum fields localized at points in O_A ". If A and B are regions on time slice (Einstein causality) [Haag. Kastler 1964]

$$[\mathfrak{A}_A,\mathfrak{A}_B]=\{0\}\ .$$

The algebra of all observables in A and B is called $\mathfrak{A}_A \vee \mathfrak{A}_B = \mathsf{v}$. Neumann algebra generated by \mathfrak{A}_A and \mathfrak{A}_B .

Abstract version of states:

Given an abstract v. Neumann algebra $\mathfrak{A}_A \vee \mathfrak{A}_B \cong \mathfrak{A}_A \otimes \mathfrak{A}_B$, states are positive normalized, normal linear functionals ω on $\mathfrak{A}_A \otimes \mathfrak{A}_B$.

Example 1: $\mathfrak{A}_A = M_n(\mathbb{C}) = \mathfrak{A}_B$. All states of form $\omega(a) = \operatorname{Tr}_{\mathcal{H}}(\rho_\omega a)$ for density matrix ρ_ω on $\mathcal{H} = \mathbb{C}^n \otimes \mathbb{C}^n$.

Separable states:

A state is called **separable** if it is a finite sum of the form $\omega = \sum \omega_{Ai} \otimes \omega_{Bi}$ where $\omega_{Ai} \otimes \omega_{Bi}(a \otimes b) = \omega_{Ai}(a)\omega_{Bi}(b)$ is normal (product state).

Example 2: $\mathfrak{A}_A = L^{\infty}(X), \mathfrak{A}_B = L^{\infty}(Y)$: Basically every state $p \in L^1(X \times Y)$ is a limit of separable states.

Remark: Normal product states will sometimes not exist (see below)!

What is entanglement?

Example 2 motivates:

Entangled states

A state is called **entangled** if it is **not** in the norm closure of separable states.

Example 1: $\mathfrak{A}_A = M_2(\mathbb{C}) = \mathfrak{A}_B$ spin-1/2 systems, Bell state $\rho = |\Omega\rangle\langle\Omega|$ $|\Omega\rangle = 2^{-1/2}(|0\rangle\otimes|0\rangle + |1\rangle\otimes|1\rangle).$

is (maximally) entangled.

Example 2: Type
$$I_n$$
: $\mathfrak{A}_A = M_n(\mathbb{C}) = \mathfrak{A}_B$: $|\Omega
angle = n^{-1/2}\sum_j |j
angle \otimes |j
angle$

Example 3: Type I_{∞} :

$$|\Omega
angle = Z_{eta}^{-1/2} \sum_{j} e^{-eta E_{j}/2} |j
angle \otimes |j
angle \quad (o {
m KMS \ condition})$$

Unfortunately [Buchholz, Wichmann 1986, Buchholz, D'Antoni, Fredenhagen 1987, Doplicher, Longo 1984, ... :

 $[\mathfrak{A}_A,\mathfrak{A}_B]=\{0\}\quad\text{does not always imply}\quad\mathfrak{A}_A\vee\mathfrak{A}_B\cong\mathfrak{A}\otimes\mathfrak{A}_B\;.$

This will happen due to boundary effects if A and B touch each other (algebras are of type III_1 in Connes classification):

Basic conclusion

- a) If A and B touch, then there are no (normal) product states, so no separable states, and no basis for discussing entanglement!
- b) If A and B do not touch, then there are no pure states (without firewalls)!

Therefore, if we want to discuss entanglement, we **must** leave a safety corridor between A and B, and we **must** accept b).

What to do with entangled states?

Now and then:

Then: EPR say (1935) Entanglement = "spooky action-at-a-distance" **Now:** Entanglement = resource for doing new things!

Example: Teleportation of a state $|\beta\rangle = \cos \frac{\theta}{2}|0\rangle + e^{i\phi} \sin \frac{\theta}{2}|1\rangle$ from A to B. [Bennett, Brassard, Crepeau, Joza, Perez, Wootters 1993].

Basic lessons:

- ► To teleport **one** "q-bit" $|\beta\rangle$ need **one** Bell-pair entangled across A and $B! \Rightarrow$ For lots of q-bits need lots of entanglement.
- Teleportation "protocol" consists of sequence of separable operations and classical communications (see below). These "use up" the entanglement of the original Bell-pair.

In type I_n situation, a channel is:

- ▶ Time evolution/gate: unitary transformation: $\mathcal{F}(a) = UaU^*$
- Ancillae: n copies of system: $\mathcal{F}(a) = 1_{\mathbb{C}^n} \otimes a$
- ▶ v. Neumann measurement: $\mathcal{F}(a) = PaP$, where $P : \mathcal{H} \to \mathcal{H}'$ projection
- Arbitrary combinations = completely positive (cp) maps [Stinespring 1955]

In general case, channel is a normalized $\mathcal{F}(1) = 1$, normal, cp map. $(\mathcal{F}: \mathfrak{M}_1 \to \mathfrak{M}_2 \text{ cp} \Leftrightarrow 1_{\mathbb{C}^2} \otimes \mathcal{F} \text{ positive.})$ Bipartite system:

Separable operations ("= channels + classical communications"):

Normalized sum of product channels, $\sum F_A \otimes F_B$ acting on operator algebra $\mathfrak{A}_A \otimes \mathfrak{A}_B$

Entanglement measures

Basic properties:

Definition of entanglement measure E:

A state functional $\omega \mapsto E(\omega)$ on $\mathfrak{A}_A \otimes \mathfrak{A}_B$ such that

- (el) $E(\omega) \ge 0$.
- (e2) $E(\omega) = 0 \Leftrightarrow \omega$ separable.
- (e3) Convexity $\sum p_i E(\omega_i) \ge E(\sum p_i \omega_i)$.
- ► (e4) No increase "on average" under separable operations:

$$\sum_{i} p_i E(\frac{1}{p_i} \mathcal{F}_i^* \omega) \le E(\omega)$$

for all states ω (NB: $p_i=\mathcal{F}_i^*\omega(1)=\text{probability that }i\text{-th separable operation is performed)}$

- (e5) Multiplicative under tensor product
- (e6) Strong superadditivity.

Examples of entanglement measures

Example 1: Relative entanglement entropy [Lindblad 1972, Uhlmann 1977, Plenio, Vedral 1998,...]:

$$E_R(\omega) = \inf_{\sigma \text{ separable}} H(\omega, \sigma) .$$

Here in type I case, $H(\omega, \sigma) = \operatorname{Tr}(\rho_{\omega} \ln \rho_{\omega} - \rho_{\omega} \ln \rho_{\sigma}) =$ Umegaki's relative entropy. General v. Neumann algebras [Araki 1970s], see below.

Example 2: Distillable entanglement [Rains 2000]:

$$E_D(\omega) = \ln \left(\max. \text{ number of Bell-pairs extractable} \right)$$
 via separable operations from N copies of $\omega \right) / copy$

Example 3: Mutual information [Schrödinger]:

$$E_I(\omega) = H(\omega, \omega_A \otimes \omega_B) \tag{1}$$

where $\omega_A = \omega \upharpoonright \mathfrak{A}_A$ etc.

Examples of entanglement measures

Example 4: Bell correlations [Bell 1964, Tsirelson 1980, Summers & Werner 1987 ...]

Example 5: Logarithmic dominance [SH & Sanders 2017, Datta 2009]:

$$E_N(\omega) = \ln\left(\inf\{\|\sigma\| \mid \sigma \ge \omega, \sigma \text{ separable}\}
ight)$$

Example 6: Modular entanglement [SH & Sanders 2017]:

$$E_M(\omega) = \ln\left(\min(\|\Psi^A\|_1, \|\Psi^B\|_1)\right)$$
(2)

where $\Psi^A : \mathfrak{A}_A \to \mathcal{H}$ given by $a \mapsto \Delta^{1/4} a |\Omega\rangle$, $|\Omega\rangle$ is the GNS-vector representing ω and Δ is the modular operator for the commutant of \mathfrak{A}_B (Here $\| \cdot \|_1$ is the 1-norm of a linear map.)

Many other examples [Otani & Tanimoto 2017, Christiandl et al. 2004, ...]!

For pure states one has basic fact [Donald, Horodecki, Rudolph 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with relative entanglement entropy.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!

Measure	Properties	Relationships	$E(\omega_n^+)$
E_B	OK		$\sqrt{2}$
E_D	OK	$E_D \le E_R, E_N, E_M, E_I$	$\ln n$
E_R	OK	$E_D \le E_R \le E_N, E_M, E_I$	$\ln n$
E_N	OK	$E_D, E_R \le E_N \le E_M$	$\ln n$
E_M	mostly OK	$E_D, E_R, E_N \le E_M$	$\frac{3}{2}\ln n$
E_I	some OK	$E_D, E_R \le E_I$	$2 \ln n$

(Here ω_n^+ =Bell state from Example 2)

Modular theory is a key structural tool in v. Neumann algebra theory. If \mathfrak{M} is a v. Neumann algebra on \mathcal{H} with cyclic and separating vector $|\Omega\rangle$, then one defines S as $(a \in \mathfrak{M})$,

$$S_{\omega}a|\Omega\rangle = a^*|\Omega\rangle, \quad S_{\omega} = J\Delta^{1/2}$$
 polar decomposition. (3)

Similarly, given two such states, one defines $S_{\omega,\omega'}a|\Omega'\rangle = a^*|\Omega\rangle$, with corresponding polar decomposition (\rightarrow relative modular operator).

Modular (Tomita-Takesaki-) theory

The structural properties of Δ (modular operator) imply many properties of the corresponding entanglement measures such as E_M, E_R, E_I .

Modular theory II

Modular theory

Some structural properties of Δ (modular operator):

- 1. $\sigma_t(a) = \Delta^{it} a \Delta^{-it}$ leaves \mathfrak{M} invariant. In QFT, if $\mathfrak{M} = \mathfrak{A}(O)$ for certain special O, $\omega =$ vacuum, then σ_t generates the action of spacetime symmetries [Bisognano & Wichmann 1976, Hislop & Longo 1982, Brunetti, Guido & Longo 1993].
- 2. $\omega \mapsto \|\Delta_{\omega}^{\alpha} a \Omega\|^2$ is a concave functional on states for $0 < \alpha < 1/2$ (WYDL concavity).
- 3. If $\mathfrak{M}_1\subset\mathfrak{M}_2$ then $\Delta_2^lpha\leq\Delta_1^lpha$ (Löwner's theorem)
- 4. KMS-property: $z \mapsto \omega(a\sigma_z(b))$ can be extended to an analytic function in strip $0 < \Im(z) < 1$ and the boundary values satisfy $\omega(a\sigma_{t+i}(b)) = \omega(\sigma_t(b)a).$

There are similar properties for the relative modular operator. The relative entropy is related by

$$H(\omega, \omega') = \langle \Omega | \ln \Delta_{\omega, \omega'} \Omega \rangle.$$

Some results [SH & Sanders 2017]:

- I. d + 1-dimensional CFTs
- 2. An exact result in $1+1~{\rm CFT}$ [Longo & Xu 2018, Casini & Huerta 2009]
- 3. Locality of entanglement [SH 2018 (to appear)]
- 4. Origin of "area law"
- 5. Exponential decay
- 6. Charged states
- 7. 1 + 1-dimensional integrable models

Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

$$u = \frac{(x_{B+} - x_{B-})^2 (x_{A+} - x_{A-})^2}{(x_{A-} - x_{B-})^2 (x_{A+} - x_{B+})^2} > 0$$

(v similarly) and set

$$\theta = \cosh^{-1}\left(\frac{1}{\sqrt{v}} - \frac{1}{\sqrt{u}}\right), \quad \tau = \cosh^{-1}\left(\frac{1}{\sqrt{v}} + \frac{1}{\sqrt{u}}\right).$$

Upper bound

For vacuum state ω_0 in any 3 + 1 dimensional CFT with local operators $\{\mathcal{O}\}$ of dimensions $d_{\mathcal{O}}$ and spins $S_{\mathcal{O}}^{L,R}$:

$$E_M(\omega_0) \leq \ln \sum_{\mathcal{O}} e^{-\tau d_{\mathcal{O}}} [2S_{\mathcal{O}}^R + 1]_{\theta} [2S_{\mathcal{O}}^L + 1]_{\theta},$$

with $[n]_{\theta} = (e^{n\theta/2} - e^{-n\theta/2})/(e^{\theta/2} - e^{-\theta/2}).$

Figure: The regions A and B.

Tools: Hislop-Longo theorem, Tomita-Takesaki theory

For concentric diamonds with radii $R \gg r$ this gives

$$E_R(\omega_0) \le E_M(\omega_0) \lesssim N_{\mathcal{O}} \left(\frac{r}{R}\right)^{d_{\mathcal{O}}} \;,$$

where $\mathcal{O} =$ operator with the smallest dimension $d_{\mathcal{O}}$ and $N_{\mathcal{O}} =$ its multiplicity.

An exact result was recently obtained by [Longo & Xu 2018] building on previous ideas of [Casini & Huerta 2009, Calabrese, Cardy, Tonni 2009/11]. They prove rigorously that for a free Dirac field on a lightray (or related theories via canonical constructions in CFT):

Free fermions

For A, B = union of disjoint intervals, dist(A, B) > 0, one has

$$E_I(\omega_0) = -\frac{c}{3}\ln u$$

where u is the analogue of the conformally invariant cross ratio (on light ray), and where ω_0 is vacuum (and c = 1/2 for free fermion).

As a consequence, $E_R(\omega_0) \leq -\frac{c}{3} \ln u$. Ingredients of proof: CAR, Kosaki-formula, ...

Locality of entanglement I

Figure: The regions A, B, C.

Consider regions B, C touching at the origin of Minkowski. $A \subset B'$ is a diamond of radius r < 1 whose center is at distance = 1 away from origin. $\lambda A =$ scaled diamond. Assume: QFT has scaling limit which is a CFT.

Theorem [SH in preparation]

If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B and C touch, then as $\lambda\to 0$,

$$\left| E_M(\omega_{\lambda A \otimes C}) - E_M(\omega_{\lambda A \otimes B}) \right| \le \operatorname{cst.} (k\lambda)^{\frac{1}{2}} Z_{\operatorname{CFT}}(\tau = \cosh^{-1} r^{-1})$$

for some explicit constant.

Locality of entanglement I

Figure: The regions $\lambda A, B, C$.

Consider regions B, C touching at the origin of Minkowski. $A \subset B'$ is a diamond of radius r < 1 whose center is at distance = 1 away from origin. $\lambda A =$ scaled diamond. Assume: QFT has scaling limit which is a CFT.

Theorem [SH in preparation]

If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B and C touch, then as $\lambda\to 0$,

$$\left| E_M(\omega_{\lambda A \otimes C}) - E_M(\omega_{\lambda A \otimes B}) \right| \le \operatorname{cst.} (k\lambda)^{\frac{1}{2}} Z_{\operatorname{CFT}}(\tau = \cosh^{-1} r^{-1})$$

for some explicit constant.

Remark: I conjecture that upper bound is optimal. If B and C touch at a point of a bifurcate Killing horizon, then upper bound is same with only change $(k\lambda)^{\frac{\kappa}{2}}$ with κ the surface gravity of bh.

Figure: Spacetime with bifurcate Killing horizon.

Locality of entanglement II

How might one prove such a theorem? At the heart of the proof is the following general result (for a related result see [Fredenhagen 1985]):

Key lemma [SH in preparation]

Let $\mathfrak{M}_1 \subset \mathfrak{M}_2$ with common cyclic and separating $|\Omega\rangle$. Assume $\sigma_{2,t}(a) \in \mathfrak{M}_1$ for $|t| \leq \tau$ for some $a \in \mathfrak{M}_1$. Then for $0 < \alpha < 1/2$,

$$0 \le \|\Delta_1^{\alpha} a \Omega\|^2 - \|\Delta_2^{\alpha} a \Omega\|^2 \le \text{cst.} \ (1 + \pi \tau) e^{-\pi \tau} \|\Delta_2^{\alpha} a \Omega\|^2 \tag{4}$$

for some explicit constant dep. on α .

The proof of the theorem is obtained by combining this lemma with:

- ▶ The Bisognano-Wichmann theorem, choosing C to be a half-plane and $\mathfrak{M}_1 = \mathfrak{A}'_C, \mathfrak{M}_2 = \mathfrak{A}'_B$. Then $\tau \sim |\ln(k\lambda)|/2\pi$ can be estimated for $a \in \mathfrak{A}_{\lambda A}$ since modular flow of C has geometric nature.
- Basic properties of the nuclear 1-norm.
- Previous estimates of E_M in CFTs.

Free massive QFTs

A and B regions in a static time slice in ultra-static spacetime, $ds^2 = -dt^2 + h$ (space); lowest energy state: ω_0 . Geodesic distance: r

Figure: The the systems A, B

Upper bounds (decay + area law)

Dirac field: As $r \rightarrow 0$

$$E_R(\omega_0) \lesssim \operatorname{cst.} |\ln(mr)| \sum_{j \ge d-1} r^{-j} \int_{\partial A} a_j$$

where a_j curvature invariants of ∂A . Lowest order \Longrightarrow area law. Klein-Gordon field: As $r \to \infty$ decay

$$E_R(\omega_0) \lesssim \operatorname{cst.} e^{-mr/2}$$

(Dirac: [Islam, SH & Sanders])

Proof of exponential decay:

I. First show that

$$E_R(\omega_0) \le -4\sum_{\pm} \operatorname{Tr} \ln(1 - |(1 - Q_{B'\mp})Q_{A\pm}|^{\frac{1}{2}})$$

for certain projection operators onto subspaces of $L^2(\mathcal{C})$ associated w/ A,B' (\to modular theory).

2. Then show that the estimation boils down to that of operator norms

$$\|C^{\alpha}\chi_A C^{\beta}(1-\chi_B)\|$$

where $C = (-\nabla_{\mathcal{C}}^2 + m^2)^{-1}$, where $\alpha, \beta \in \mathbb{R}$ (depending on the dimension). χ_A is a smoothed out indicator function of A, similarly B.

3. Use "finite propagation speed" [Fefferman et al. 1986] property of $\exp it(-\nabla_{\mathcal{C}}^2 + m^2)^{1/2}$ and Fourier representation $(X^2 + \lambda^2)^{\alpha} = \int dt f(t) e^{itX}$. Integration range for t effectively cut off to |t| > r. \Rightarrow exponential decay in r.

We expect our methods to yield similar results to hold generally on spacetimes with bifurcate Killing horizon:

Figure: Spacetime with bifurcate Killing horizon.

Charged states

A and B regions, ω any normal state in a QFT in d + 1 dim. $\chi^*\omega$ state obtained by adding "charges" χ in A or B.

Figure: Adding charges to state in A

Upper bound

$$0 \le E_R(\omega) - E_R(\chi^*\omega) \le \ln \prod_i \dim(\chi_i)^{2n_i} ,$$

 n_i : # irreducible charges χ_i type i, and

 $\dim(\chi_i) =$ quantum dimension $= \sqrt{$ Jones index

Remark: Same inequality for E_M .

Index-statistics theorem [Longo 1989/90], Jones subfactor theory, Pimsner-Popa-inequality, Doplicher-Haag-Roberts theory; Naaijkens talk

Example: d = 1, Minimal model type (p, p + 1), χ irreducible charge of type (n, m)

$$0 \le E_R(\omega) - E_R(\chi^*\omega) \le \ln \frac{\sin\left(\frac{\pi(p+1)m}{p}\right)\sin\left(\frac{\pi pn}{p+1}\right)}{\sin\left(\frac{\pi(p+1)}{p}\right)\sin\left(\frac{\pi p}{p+1}\right)}$$

Example: d > 1, general QFT, irreducible charge χ with Young tableaux statistics $\begin{bmatrix} 8 & 6 & 5 & 4 & 2 & 1 \\ 5 & 3 & 2 & 1 \\ 1 \end{bmatrix}$.

$$0 \le E_R(\omega) - E_R(\chi^*\omega) \le 2\ln 5,945,940$$

Area law in asymptotically free QFTs

A and B regions separated by a thin corridor of diameter $\varepsilon>0$ in d+1 dimensional Minkowski spacetime, vacuum $\omega_0=$ vacuum.

Figure: The the systems A, B

Result ("area law")

Asymptotically, as $\varepsilon \to 0$

$$E_R(\omega_0) \gtrsim egin{cases} D_2 \cdot |\partial A| / arepsilon^{d-1} & d > 1, \ D_2 \cdot \ln rac{\min(|A|,|B|)}{arepsilon} & d = 1, \end{cases}$$

where $D_2 = \text{distillable entropy } E_D$ of an elementary "Cbit" pair

Tools: Strong super additivity of E_D , bounds [Donald, Horodecki, Rudolph 2002], also [Verch, Werner 2005, Wolf, Werner 2001/06,HHorodecki 1999]

Integrable models

These models (i.e. their algebras \mathfrak{A}_A) are constructed using an "inverse scattering" method from their 2-body *S*-matrix, e.g.

$$S_2(\theta) = \prod_{k=1}^{2N+1} \frac{\sinh \theta - i \sin b_k}{\sinh \theta + i \sin b_k} ,$$

by [Schroer & Wiesbrock 2000, Buchholz & Lechner 2004, Lechner 2008, Allazawi & Lechner 2016, Cadamuro & Tanimoto 2016]. $b_i =$ parameters specifying model, e.g. sinh-Gordon model (N = 0).

Figure: The regions A, B.

Upper bound

For vacuum state ω_0 and mass m > 0:

$$E_R(\omega_0) \le E_M(\omega_0) \lesssim \operatorname{cst.} e^{-mr(1-k)}$$

.

for $mr \gg 1$. The constant depends on the scattering matrix S_2 , and k > 0.

Idea of the proof: E_M is related to the log of the I-norm of the linear map

$$\mathfrak{A}_A \ni a \mapsto \Delta^{1/4} a | \Omega \rangle \in \mathcal{H},$$

where Δ is the modular operator of B'. The corresponding modular flow acts geometrically by Bisognano-Wichmann. In fact, the norm can be estimated explicitly using an explicit construction of the operator algebras $\mathfrak{A}_A,\mathfrak{A}_B$ on the S_2 -symmetric Fock space \mathcal{H} , relying on techniques of [Lechner 2008, Allazavi & Lechner 2016]

In this talk, I have

- Explained what entanglement is, and how it can be used.
- Explained what an entanglement measure is, and given concrete examples
- Explained how entanglement arises in Quantum Field Theory, and why there always has to be a finite safety corridor between the systems.
- Evaluated (in the sense of upper and lower bounds) a particularly natural entanglement measure in several geometrical setups, quantum field theories and states of interest.
- Given some idea how modular theory (Tomita-Takesaki theory) comes in.

Worth further study: relation with the considerable literature on v. Neumann entropy in the theoretical physics literature! Especially:

- 2d CFTs Calabrese, Cardy, Nozaki, Numasawa, Takayanagi,...
- 2d integrable models Calabrese, Cardy, Doyon, ...
- Modular theory, c-theorems: Casini, Huerta,...
- Holographic methods Hubeny, Myers, Rangamani, Ryu, Takayanagi,...