Entanglement Measures and Modular Theory

S. Hollands
\section*{UNIVERSITAT LEIPZIG}
mostly based on joint work with K Sanders
arXiv:1702.04924 [quant-ph]
Quantum Information and Operator Algebras
Rome
15.2.2017

What is entanglement?

Entanglement

Entanglement concerns subsystems (usually two, called A and B) of an ambient system. Roughly, one asks how much "information" one can extract about the state of the total system by performing separately local, coordinated operations in A and B.

Basic setup

Abstractly, the typical setup for (bipartite) entanglement is as follows:

Setup

Two commuting v. Neumann algebras $\mathfrak{A}_{A}, \mathfrak{A}_{B}$ defined on common Hilbert space \mathcal{H} with unitary identification $\mathfrak{A}_{A} \vee \mathfrak{A}_{B} \cong \mathfrak{A}_{A} \otimes \mathfrak{A}_{B}$.

Example 1: $\mathfrak{A}_{A}=M_{n}(\mathbb{C})=\mathfrak{A}_{B}$ realized on Hilbert space $\mathcal{H}=\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ with standard inner product. States of the system correspond to vectors or density matrices on \mathcal{H}. ("Type I case")

Example 2: $\mathfrak{A}_{A}=L^{\infty}(X), \mathfrak{A}_{B}=L^{\infty}(Y)$: Classical situation. Probability distributions $p \in L^{1}(X \times Y)$ give states.

Example 3: Let $A, B \subset \mathbb{R}^{d}$, and $\mathfrak{A}_{A}, \mathfrak{A}_{B}$ the algebras of observables of a quantum field theory localized in corresponding "causal diamonds" $O_{A}, O_{B} \subset \mathbb{R}^{d, 1}$. ("Type III case")

Localization in QFT

In QFT, systems are tied to spacetime localization, e.g. system A

time slice $=$ Cauchy surface \mathcal{C}

Figure: Causal diamond O_{A} associated with A.

Set of observables measurable within O_{A} is an algebra $\mathfrak{A}_{A}=$ "quantum fields localized at points in O_{A} ". If A and B are regions on time slice (Einstein causality) [Haag, Kaster 1964]

$$
\left[\mathfrak{A}_{A}, \mathfrak{A}_{B}\right]=\{0\}
$$

The algebra of all observables in A and B is called $\mathfrak{A}_{A} \vee \mathfrak{A}_{B}=\mathrm{v}$. Neumann algebra generated by \mathfrak{A}_{A} and \mathfrak{A}_{B}.

What is entanglement?

Abstract version of states:

Given an abstract v. Neumann algebra $\mathfrak{A}_{A} \vee \mathfrak{A}_{B} \cong \mathfrak{A}_{A} \otimes \mathfrak{A}_{B}$, states are positive normalized, normal linear functionals ω on $\mathfrak{A}_{A} \otimes \mathfrak{A}_{B}$.

Example 1: $\mathfrak{A}_{A}=M_{n}(\mathbb{C})=\mathfrak{A}_{B}$. All states of form $\omega(a)=\operatorname{Tr}_{\mathcal{H}}\left(\rho_{\omega} a\right)$ for density matrix ρ_{ω} on $\mathcal{H}=\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.

Separable states:
A state is called separable if it is a finite sum of the form $\omega=\sum \omega_{A i} \otimes \omega_{B i}$ where $\omega_{A i} \otimes \omega_{B i}(a \otimes b)=\omega_{A i}(a) \omega_{B i}(b)$ is normal (product state).

Example 2: $\mathfrak{A}_{A}=L^{\infty}(X), \mathfrak{A}_{B}=L^{\infty}(Y)$: Basically every state $p \in L^{1}(X \times Y)$ is a limit of separable states.

Remark: Normal product states will sometimes not exist (see below)!

What is entanglement?

Example 2 motivates:

Entangled states

A state is called entangled if it is not in the norm closure of separable states.

Example 1: $\mathfrak{A}_{A}=M_{2}(\mathbb{C})=\mathfrak{A}_{B}$ spin-I/2 systems, Bell state $\rho=|\Omega\rangle\langle\Omega|$

$$
|\Omega\rangle=2^{-1 / 2}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

is (maximally) entangled.
Example 2: Type $I_{n}: \mathfrak{A}_{A}=M_{n}(\mathbb{C})=\mathfrak{A}_{B}$:

$$
|\Omega\rangle=n^{-1 / 2} \sum_{j}|j\rangle \otimes|j\rangle
$$

Example 3: Type I_{∞} :

$$
|\Omega\rangle=Z_{\beta}^{-1 / 2} \sum_{j} e^{-\beta E_{j} / 2}|j\rangle \otimes|j\rangle \quad(\rightarrow \text { KMS condition })
$$

Situation in QFT

Unfortunately [Buchholz, Wichmann 1986, Buchholz, D'Antoni, Fredenhagen 1987, Doplicher, Longo 1984, ... :

$$
\left[\mathfrak{A}_{A}, \mathfrak{A}_{B}\right]=\{0\} \quad \text { does not always imply } \quad \mathfrak{A}_{A} \vee \mathfrak{A}_{B} \cong \mathfrak{A}_{A} \otimes \mathfrak{A}_{B}
$$

This will happen due to boundary effects if A and B touch each other (algebras are of type $I I I_{1}$ in Connes classification):

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no separable states, and no basis for discussing entanglement!
b) If A and B do not touch, then there are no pure states (without firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety corridor between A and B, and we must accept b).

What to do with entangled states?

Now and then:
Then: EPR say (1935) Entanglement = "spooky action-at-a-distance" Now: Entanglement = resource for doing new things!

Example: Teleportation of a state $|\beta\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle$ from A to B. [Bennett, Brassard, Crepeau, Jossa, Perez, Wootters 1993].

Figure: Teleportation of one q-bit.

Quantum teleportation

Basic lessons:

- To teleport one " q-bit" $|\beta\rangle$ need one Bell-pair entangled across A and $B!\Rightarrow$ For lots of q-bits need lots of entanglement.
- Teleportation "protocol" consists of sequence of separable operations and classical communications (see below). These "use up" the entanglement of the original Bell-pair.

When is a state more entangled than another?

In type I_{n} situation, a channel is:

- Time evolution/gate: unitary transformation: $\mathcal{F}(a)=U a U^{*}$
- Ancillae: n copies of system: $\mathcal{F}(a)=1_{\mathbb{C}^{n}} \otimes a$
- v. Neumann measurement: $\mathcal{F}(a)=P a P$, where $P: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ projection
- Arbitrary combinations = completely positive (cp) maps [stinespring 1955] In general case, channel is a normalized $\mathcal{F}(1)=1$, normal, cp map. ($\mathcal{F}: \mathfrak{M}_{1} \rightarrow \mathfrak{M}_{2} \mathrm{cp} \Leftrightarrow 1_{\mathbb{C}^{2}} \otimes \mathcal{F}$ positive.) Bipartite system:

Separable operations (" $=$ channels + classical communications"):
Normalized sum of product channels, $\sum \mathcal{F}_{A} \otimes \mathcal{F}_{B}$ acting on operator algebra $\mathfrak{A}_{A} \otimes \mathfrak{A}_{B}$

Entanglement measures

Basic properties:
Definition of entanglement measure E :
A state functional $\omega \mapsto E(\omega)$ on $\mathfrak{A}_{A} \otimes \mathfrak{A}_{B}$ such that

- (el) $E(\omega) \geq 0$.
- (e2) $E(\omega)=0 \Leftrightarrow \omega$ separable.
- (e3) Convexity $\sum p_{i} E\left(\omega_{i}\right) \geq E\left(\sum p_{i} \omega_{i}\right)$.
- (e4) No increase "on average" under separable operations:

$$
\sum_{i} p_{i} E\left(\frac{1}{p_{i}} \mathcal{F}_{i}^{*} \omega\right) \leq E(\omega)
$$

for all states ω (NB: $p_{i}=\mathcal{F}_{i}^{*} \omega(1)=$ probability that i-th separable operation is performed)

- (e5) Multiplicative under tensor product
- (e6) Strong superadditivity.

Examples of entanglement measures

Example 1: Relative entanglement entropy [Lindlad 1972, Uhlmann 1977, Plenio, Vedral 1998,..|]:

$$
E_{R}(\omega)=\inf _{\sigma \text { separable }} H(\omega, \sigma)
$$

Here in type I case, $H(\omega, \sigma)=\operatorname{Tr}\left(\rho_{\omega} \ln \rho_{\omega}-\rho_{\omega} \ln \rho_{\sigma}\right)=$ Umegaki's relative entropy. General v. Neumann algebras [Araki 1970s], see below.

Example 2: Distillable entanglement [Rains 2000]:

$$
\begin{aligned}
E_{D}(\omega)=\ln & (\text { max. number of Bell-pairs extractable } \\
& \text { via separable operations from } N \text { copies of } \omega) / \text { copy }
\end{aligned}
$$

Example 3: Mutual information [schrödinger]:

$$
\begin{equation*}
E_{I}(\omega)=H\left(\omega, \omega_{A} \otimes \omega_{B}\right) \tag{I}
\end{equation*}
$$

where $\omega_{A}=\omega \upharpoonright \mathfrak{A}_{A}$ etc.

Examples of entanglement measures

Example 4: Bell correlations [Bell 1964, Tsirielson 1980, Summers \& Werner 1987...]
Example 5: Logarithmic dominance $[5 H \&$ Sanders 2017, Data 2009]:

$$
E_{N}(\omega)=\ln (\inf \{\|\sigma\| \mid \sigma \geq \omega, \sigma \text { separable }\})
$$

Example 6: Modular entanglement [5H \& Sanders 2017]:

$$
\begin{equation*}
E_{M}(\omega)=\ln \left(\min \left(\left\|\Psi^{A}\right\|_{1},\left\|\Psi^{B}\right\|_{1}\right)\right) \tag{2}
\end{equation*}
$$

where $\Psi^{A}: \mathfrak{A}_{A} \rightarrow \mathcal{H}$ given by $a \mapsto \Delta^{1 / 4} a|\Omega\rangle,|\Omega\rangle$ is the GNS-vector representing ω and Δ is the modular operator for the commutant of \mathfrak{A}_{B} (Here $\|.\|_{1}$ is the I-norm of a linear map.)

Many other examples [Otani \& Tanimoto 2017, Christiand e eal. 2004, ...]!

Uniqueness?

For pure states one has basic fact [Donald, Horodecki, Rudolph 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with relative entanglement entropy.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!

Some relationships 패

Measure	Properties	Relationships	$E\left(\omega_{n}^{+}\right)$
E_{B}	OK		$\sqrt{2}$
E_{D}	OK	$E_{D} \leq E_{R}, E_{N}, E_{M}, E_{I}$	$\ln n$
E_{R}	OK	$E_{D} \leq E_{R} \leq E_{N}, E_{M}, E_{I}$	$\ln n$
E_{N}	OK	$E_{D}, E_{R} \leq E_{N} \leq E_{M}$	$\ln n$
E_{M}	mostly OK	$E_{D}, E_{R}, E_{N} \leq E_{M}$	$\frac{3}{2} \ln n$
E_{I}	some OK	$E_{D}, E_{R} \leq E_{I}$	$2 \ln n$

(Here $\omega_{n}^{+}=$Bell state from Example 2)

Modular theory I

Modular theory is a key structural tool in v. Neumann algebra theory. If \mathfrak{M} is a v. Neumann algebra on \mathcal{H} with cyclic and separating vector $|\Omega\rangle$, then one defines S as $(a \in \mathfrak{M})$,

$$
\begin{equation*}
S_{\omega} a|\Omega\rangle=a^{*}|\Omega\rangle, \quad S_{\omega}=J \Delta^{1 / 2} \quad \text { polar decomposition. } \tag{3}
\end{equation*}
$$

Similarly, given two such states, one defines $S_{\omega, \omega^{\prime}} a\left|\Omega^{\prime}\right\rangle=a^{*}|\Omega\rangle$, with corresponding polar decomposition (\rightarrow relative modular operator).

Modular (Tomita-Takesaki-) theory

The structural properties of Δ (modular operator) imply many properties of the corresponding entanglement measures such as E_{M}, E_{R}, E_{I}.

Modular theory II

Modular theory

Some structural properties of Δ (modular operator):
I. $\sigma_{t}(a)=\Delta^{i t} a \Delta^{-i t}$ leaves \mathfrak{M} invariant. In QFT, if $\mathfrak{M}=\mathfrak{A}(O)$ for certain special $O, \omega=$ vacuum, then σ_{t} generates the action of spacetime symmetries [Bisognano \& Wichmann 1976, Hislop \& Longo 1982, Brunetti, Guido \& Longo 1993].
2. $\omega \mapsto\left\|\Delta_{\omega}^{\alpha} a \Omega\right\|^{2}$ is a concave functional on states for $0<\alpha<1 / 2$ (WYDL concavity).
3. If $\mathfrak{M}_{1} \subset \mathfrak{M}_{2}$ then $\Delta_{2}^{\alpha} \leq \Delta_{1}^{\alpha}$ (Löwner's theorem)
4. KMS-property: $z \mapsto \omega\left(a \sigma_{z}(b)\right)$ can be extended to an analytic function in strip $0<\Im(z)<1$ and the boundary values satisfy $\omega\left(a \sigma_{t+i}(b)\right)=\omega\left(\sigma_{t}(b) a\right)$.

There are similar properties for the relative modular operator. The relative entropy is related by

$$
H\left(\omega, \omega^{\prime}\right)=\left\langle\Omega \mid \ln \Delta_{\omega, \omega^{\prime}} \Omega\right\rangle
$$

Some results

Some results [SH \& Sanders 2017]:
I. $d+1$-dimensional CFTs
2. An exact result in $1+1$ CFT [Longo $\& \times u$ 2018, Casini $\&$ Huerta 2009]
3. Locality of entanglement [sH 2018 (to appear)]
4. Origin of "area law"
5. Exponential decay
6. Charged states
7. 1+1-dimensional integrable models

CFTs

Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

$$
u=\frac{\left(x_{B+}-x_{B-}\right)^{2}\left(x_{A+}-x_{A-}\right)^{2}}{\left(x_{A-}-x_{B-}\right)^{2}\left(x_{A+}-x_{B+}\right)^{2}}>0
$$

(v similarly) and set

$$
\theta=\cosh ^{-1}\left(\frac{1}{\sqrt{v}}-\frac{1}{\sqrt{u}}\right), \quad \tau=\cosh ^{-1}\left(\frac{1}{\sqrt{v}}+\frac{1}{\sqrt{u}}\right) .
$$

Upper bound

For vacuum state ω_{0} in any $3+1$ dimensional CFT with local operators $\{\mathcal{O}\}$ of dimensions $d_{\mathcal{O}}$ and spins $S_{\mathcal{O}}^{L, R}$:

$$
E_{M}\left(\omega_{0}\right) \leq \ln \sum_{\mathcal{O}} e^{-\tau d_{\mathcal{O}}}\left[2 S_{\mathcal{O}}^{R}+1\right]_{\theta}\left[2 S_{\mathcal{O}}^{L}+1\right]_{\theta}
$$

with $[n]_{\theta}=\left(e^{n \theta / 2}-e^{-n \theta / 2}\right) /\left(e^{\theta / 2}-e^{-\theta / 2}\right)$.

Figure: The regions A and B.

For concentric diamonds with radii $R \gg r$ this gives

$$
E_{R}\left(\omega_{0}\right) \leq E_{M}\left(\omega_{0}\right) \lesssim N_{\mathcal{O}}\left(\frac{r}{R}\right)^{d_{\mathcal{O}}}
$$

where $\mathcal{O}=$ operator with the smallest dimension $d_{\mathcal{O}}$ and $N_{\mathcal{O}}=$ its multiplicity.

Exact result in $1+1$

An exact result was recently obtained by [Longo \& Xu 2018 b building on previous ideas of [Casini \& Huerta 2009, Calabrese, Cardy, Tonni 2009/II]. They prove rigorously that for a free Dirac field on a lightray (or related theories via canonical constructions in CFT):

Free fermions

For $A, B=$ union of disjoint intervals, $\operatorname{dist}(A, B)>0$, one has

$$
E_{I}\left(\omega_{0}\right)=-\frac{c}{3} \ln u
$$

where u is the analogue of the conformally invariant cross ratio (on light ray), and where ω_{0} is vacuum (and $c=1 / 2$ for free fermion).

As a consequence, $E_{R}\left(\omega_{0}\right) \leq-\frac{c}{3} \ln u$. Ingredients of proof: CAR, Kosaki-formula, ...

Locality of entanglement I

Figure: The regions A, B, C.

Consider regions B, C touching at the origin of Minkowski. $A \subset B^{\prime}$ is a diamond of radius $r<1$ whose center is at distance $=1$ away from origin. $\lambda A=$ scaled diamond. Assume: QFT has scaling limit which is a CFT.

Theorem [sH in preparation]

If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B and C touch, then as $\lambda \rightarrow 0$,

$$
\left|E_{M}\left(\omega_{\lambda A \otimes C}\right)-E_{M}\left(\omega_{\lambda A \otimes B}\right)\right| \leq \operatorname{cst} .(k \lambda)^{\frac{1}{2}} Z_{\mathrm{CFT}}\left(\tau=\cosh ^{-1} r^{-1}\right)
$$

for some explicit constant.

Locality of entanglement I

Figure: The regions $\lambda A, B, C$.

Consider regions B, C touching at the origin of Minkowski. $A \subset B^{\prime}$ is a diamond of radius $r<1$ whose center is at distance $=1$ away from origin. $\lambda A=$ scaled diamond. Assume: QFT has scaling limit which is a CFT.

Theorem [sH in preparation]
If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B and C touch, then as $\lambda \rightarrow 0$,

$$
\left|E_{M}\left(\omega_{\lambda A \otimes C}\right)-E_{M}\left(\omega_{\lambda A \otimes B}\right)\right| \leq \operatorname{cst} .(k \lambda)^{\frac{1}{2}} Z_{\mathrm{CFT}}\left(\tau=\cosh ^{-1} r^{-1}\right)
$$

for some explicit constant.

Locality of entanglement I

Remark: I conjecture that upper bound is optimal. If B and C touch at a point of a bifurcate Killing horizon, then upper bound is same with only change $(k \lambda)^{\frac{\kappa}{2}}$ with κ the surface gravity of bh.

Figure: Spacetime with bifurcate Killing horizon.

Locality of entanglement II

How might one prove such a theorem? At the heart of the proof is the following general result (for a related result see [fredenhagen 1985]):

Key lemma [sH in preparation]

Let $\mathfrak{M}_{1} \subset \mathfrak{M}_{2}$ with common cyclic and separating $|\Omega\rangle$. Assume $\sigma_{2, t}(a) \in \mathfrak{M}_{1}$ for $|t| \leq \tau$ for some $a \in \mathfrak{M}_{1}$. Then for $0<\alpha<1 / 2$,

$$
\begin{equation*}
0 \leq\left\|\Delta_{1}^{\alpha} a \Omega\right\|^{2}-\left\|\Delta_{2}^{\alpha} a \Omega\right\|^{2} \leq \operatorname{cst} .(1+\pi \tau) e^{-\pi \tau}\left\|\Delta_{2}^{\alpha} a \Omega\right\|^{2} \tag{4}
\end{equation*}
$$

for some explicit constant dep. on α.
The proof of the theorem is obtained by combining this lemma with:

- The Bisognano-Wichmann theorem, choosing C to be a half-plane and $\mathfrak{M}_{1}=\mathfrak{A}_{C}^{\prime}, \mathfrak{M}_{2}=\mathfrak{A}_{B}^{\prime}$. Then $\tau \sim|\ln (k \lambda)| / 2 \pi$ can be estimated for $a \in \mathfrak{A}_{\lambda A}$ since modular flow of C has geometric nature.
- Basic properties of the nuclear I-norm.
- Previous estimates of E_{M} in CFTs.

Free massive QFTs

A and B regions in a static time slice in ultra-static spacetime, $\mathrm{d} s^{2}=-\mathrm{d} t^{2}+h($ space $)$; lowest energy state: ω_{0}. Geodesic distance: r

Figure: The the systems A, B

Upper bounds (decay + area law)

Dirac field: As $r \rightarrow 0$

$$
E_{R}\left(\omega_{0}\right) \lesssim \mathrm{cst} .|\ln (m r)| \sum_{j \geq d-1} r^{-j} \int_{\partial A} a_{j}
$$

where a_{j} curvature invariants of ∂A. Lowest order \Longrightarrow area law. Klein-Gordon field: As $r \rightarrow \infty$ decay

$$
E_{R}\left(\omega_{0}\right) \lesssim \operatorname{cst} . e^{-m r / 2}
$$

(Dirac: [lslam, SH \& Sanders])

Proof of exponential decay:

I. First show that

$$
E_{R}\left(\omega_{0}\right) \leq-4 \sum_{ \pm} \operatorname{Tr} \ln \left(1-\left|\left(1-Q_{B^{\prime} \mp}\right) Q_{A \pm}\right|^{\frac{1}{2}}\right)
$$

for certain projection operators onto subspaces of $L^{2}(\mathcal{C})$ associated w/ A, B^{\prime} (\rightarrow modular theory).
2. Then show that the estimation boils down to that of operator norms

$$
\left\|C^{\alpha} \chi_{A} C^{\beta}\left(1-\chi_{B}\right)\right\|
$$

where $C=\left(-\nabla_{\mathcal{C}}^{2}+m^{2}\right)^{-1}$, where $\alpha, \beta \in \mathbb{R}$ (depending on the dimension). χ_{A} is a smoothed out indicator function of A, similarly B.
3. Use "finite propagation speed" ${ }_{\text {[Fefferman et al. } 1886]}$ property of $\exp i t\left(-\nabla_{\mathcal{C}}^{2}+m^{2}\right)^{1 / 2}$ and Fourier representation $\left(X^{2}+\lambda^{2}\right)^{\alpha}=\int d t f(t) e^{i t X}$. Integration range for t effectively cut off to $|t|>r . \Rightarrow$ exponential decay in r.

We expect our methods to yield similar results to hold generally on spacetimes with bifurcate Killing horizon:

Figure: Spacetime with bifurcate Killing horizon.

Charged states

A and B regions, ω any normal state in a QFT in $d+1$ dim.
$\chi^{*} \omega$ state obtained by adding "charges" χ in A or B.

Figure: Adding charges to state in A

Upper bound

$$
0 \leq E_{R}(\omega)-E_{R}\left(\chi^{*} \omega\right) \leq \ln \prod_{i} \operatorname{dim}\left(\chi_{i}\right)^{2 n_{i}}
$$

n_{i} : \# irreducible charges χ_{i} type i, and

$$
\operatorname{dim}\left(\chi_{i}\right)=\text { quantum dimension }=\sqrt{\text { Jones index }}
$$

Remark: Same inequality for E_{M}.

Examples

Example: $d=1$, Minimal model type $(p, p+1)$, χ irreducible charge of type (n, m)

$$
0 \leq E_{R}(\omega)-E_{R}\left(\chi^{*} \omega\right) \leq \ln \frac{\sin \left(\frac{\pi(p+1) m}{p}\right) \sin \left(\frac{\pi p n}{p+1}\right)}{\sin \left(\frac{\pi(p+1)}{p}\right) \sin \left(\frac{\pi p}{p+1}\right)}
$$

Example: $d>1$, general QFT, irreducible charge χ with Young tableaux

$$
0 \leq E_{R}(\omega)-E_{R}\left(\chi^{*} \omega\right) \leq 2 \ln 5,945,940
$$

Area law in asymptotically free QFTs

A and B regions separated by a thin corridor of diameter $\varepsilon>0$ in $d+1$ dimensional Minkowski spacetime, vacuum $\omega_{0}=$ vacuum.

Figure: The the systems A, B

Result ("area law")

Asymptotically, as $\varepsilon \rightarrow 0$

$$
E_{R}\left(\omega_{0}\right) \gtrsim \begin{cases}D_{2} \cdot|\partial A| / \varepsilon^{d-1} & d>1 \\ D_{2} \cdot \ln \frac{\min (|A|,|B|)}{\varepsilon} & d=1\end{cases}
$$

where $D_{2}=$ distillable entropy E_{D} of an elementary "Cbit" pair

Tools: Strong super additivity of E_{D}, bounds [Donald, Horodecki, Rudolph 2002], also [Verch, Werner 2005, Wolf, Werner

Integrable models

These models (i.e. their algebras \mathfrak{A}_{A}) are constructed using an "inverse scattering" method from their 2-body S-matrix, e.g.

$$
S_{2}(\theta)=\prod_{k=1}^{2 N+1} \frac{\sinh \theta-i \sin b_{k}}{\sinh \theta+i \sin b_{k}}
$$

by [Schroer \& Wiesbrock 2000, Buchholz \& Lechner 2004, Lechner 2008, Allazawi \& Lechner 2016, Cadamuro \& Tanimoto 2016]. $b_{i}=$ parameters specifying model, e.g. sinh-Gordon model $(N=0)$.

Figure: The regions A, B.

Upper bound

For vacuum state ω_{0} and mass $m>0$:

$$
E_{R}\left(\omega_{0}\right) \leq E_{M}\left(\omega_{0}\right) \lesssim \text { cst. } e^{-m r(1-k)} .
$$

for $m r \gg 1$. The constant depends on the scattering matrix S_{2}, and $k>0$.
Idea of the proof: E_{M} is related to the log of the I-norm of the linear map

$$
\mathfrak{A}_{A} \ni a \mapsto \Delta^{1 / 4} a|\Omega\rangle \in \mathcal{H},
$$

where Δ is the modular operator of B^{\prime}. The corresponding modular flow acts geometrically by Bisognano-Wichmann. In fact, the norm can be estimated explicitly using an explicit construction of the operator algebras $\mathfrak{A}_{A}, \mathfrak{A}_{B}$ on the S_{2}-symmetric Fock space \mathcal{H}, relying on techniques of [Lechner

In this talk, I have

- Explained what entanglement is, and how it can be used.
- Explained what an entanglement measure is, and given concrete examples
- Explained how entanglement arises in Quantum Field Theory, and why there always has to be a finite safety corridor between the systems.
- Evaluated (in the sense of upper and lower bounds) a particularly natural entanglement measure in several geometrical setups, quantum field theories and states of interest.
- Given some idea how modular theory (Tomita-Takesaki theory) comes in.

Worth further study: relation with the considerable literature on v.
Neumann entropy in the theoretical physics literature! Especially:

- 2d CFTs Calabrese, Cardy, Nozaki, Numasawa, Takzyanagi....
- 2d integrable models Calabrese, Cardy, Doyon,...
- Modular theory, c-theorems: Casini, Huerta,...
- Holographic methods Hubeny, Myers, Rangamani, Ryu, Takayanagi...

