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What is entanglement?

Entanglement

Entanglement concerns subsystems (usually two, called A and B) of an
ambient system. Roughly, one asks how much “information” one can extract
about the state of the total system by performing separately local,
coordinated operations in A and B.



Basic setup

Abstractly, the typical setup for (bipartite) entanglement is as follows:

Setup

Two commuting v. Neumann algebras AA,AB defined on common Hilbert
space H with unitary identification AA ∨ AB

∼= AA ⊗ AB .

Example 1: AA = Mn(C) = AB realized on Hilbert space H = Cn ⊗ Cn

with standard inner product. States of the system correspond to vectors or
density matrices on H. (“Type I case”)

Example 2: AA = L∞(X),AB = L∞(Y ): Classical situation. Probability
distributions p ∈ L1(X × Y ) give states.

Example 3: Let A,B ⊂ Rd, and AA,AB the algebras of observables of a
quantum field theory localized in corresponding “causal diamonds”
OA, OB ⊂ Rd,1. (“Type III case”)



Localization in QFT

In QFT, systems are tied to spacetime localization, e.g. system A

A

time slice = Cauchy surface C

OA

C

Figure: Causal diamond OA associated with A.

Set of observables measurable within OA is an algebra AA = “quantum fields
localized at points in OA”. If A and B are regions on time slice (Einstein
causality) [Haag, Kastler 1964]

[AA,AB] = {0} .

The algebra of all observables in A and B is called AA ∨ AB = v. Neumann
algebra generated by AA and AB .



What is entanglement?

Abstract version of states:
Given an abstract v. Neumann algebra AA ∨ AB

∼= AA ⊗ AB , states are
positive normalized, normal linear functionals ω on AA ⊗ AB .

Example 1: AA = Mn(C) = AB . All states of form ω(a) = TrH(ρωa) for
density matrix ρω on H = Cn ⊗ Cn.

Separable states:

A state is called separable if it is a finite sum of the form ω =
∑

ωAi ⊗ ωBi

where ωAi ⊗ ωBi(a⊗ b) = ωAi(a)ωBi(b) is normal (product state).

Example 2: AA = L∞(X),AB = L∞(Y ): Basically every state
p ∈ L1(X × Y ) is a limit of separable states.

Remark: Normal product states will sometimes not exist (see below)!



What is entanglement?

Example 2 motivates:

Entangled states

A state is called entangled if it is not in the norm closure of separable
states.

Example 1: AA = M2(C) = AB spin-1/2 systems, Bell state ρ = |Ω⟩⟨Ω|
|Ω⟩ = 2−1/2(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩).

is (maximally) entangled.

Example 2: Type In: AA = Mn(C) = AB :

|Ω⟩ = n−1/2
∑
j

|j⟩ ⊗ |j⟩

Example 3: Type I∞:

|Ω⟩ = Z
−1/2
β

∑
j

e−βEj/2|j⟩ ⊗ |j⟩ (→ KMS condition)



Situation in QFT

Unfortunately [Buchholz, Wichmann 1986, Buchholz, D‘Antoni, Fredenhagen 1987, Doplicher, Longo 1984, ... :

[AA,AB] = {0} does not always imply AA ∨ AB
∼= AA ⊗ AB .

This will happen due to boundary effects if A and B touch each other
(algebras are of type III1 in Connes classification):

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no
separable states, and no basis for discussing entanglement!

b) If A and B do not touch, then there are no pure states (without
firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety
corridor between A and B, and we must accept b).



What to do with entangled states?

Now and then:
Then: EPR say (1935) Entanglement = “spooky action-at-a-distance”
Now: Entanglement = resource for doing new things!

Example: Teleportation of a state |β⟩ = cos θ
2 |0⟩+ eiϕ sin θ

2 |1⟩ from A to
B. [Bennett, Brassard, Crepeau, Jozsa, Perez, Wootters 1993].

BA

want

00, 01, 10, 11

can transmit

|1⟩

|0⟩ |β⟩ = cos θ
2 |0⟩+ eiϕ sin θ

2 |1⟩θ

ϕ

Figure: Teleportation of one q-bit.



Quantum teleportation

Basic lessons:

▶ To teleport one “q-bit” |β⟩ need one Bell-pair entangled across A and
B! ⇒ For lots of q-bits need lots of entanglement.

▶ Teleportation “protocol” consists of sequence of separable
operations and classical communications (see below). These “use up”
the entanglement of the original Bell-pair.



When is a state more entangled than another?

In type In situation, a channel is:

▶ Time evolution/gate: unitary transformation: F(a) = UaU∗

▶ Ancillae: n copies of system: F(a) = 1Cn ⊗ a

▶ v. Neumann measurement: F(a) = PaP , where P : H → H′

projection
▶ Arbitrary combinations = completely positive (cp) maps [Stinespring 1955]

In general case, channel is a normalized F(1) = 1, normal, cp map.
(F : M1 → M2 cp ⇔ 1C2 ⊗F positive.) Bipartite system:

Separable operations (“= channels + classical communications”):

Normalized sum of product channels,
∑

FA ⊗FB acting on operator
algebra AA ⊗ AB



Entanglement measures

Basic properties:

Definition of entanglement measure E:

A state functional ω 7→ E(ω) on AA ⊗ AB such that
▶ (e1) E(ω) ≥ 0.
▶ (e2) E(ω) = 0 ⇔ ω separable.
▶ (e3) Convexity

∑
piE(ωi) ≥ E(

∑
piωi).

▶ (e4) No increase “on average” under separable operations:∑
i

piE( 1
pi
F∗
i ω) ≤ E(ω)

for all states ω (NB: pi = F∗
i ω(1) = probability that i-th separable

operation is performed)
▶ (e5) Multiplicative under tensor product
▶ (e6) Strong superadditivity.



Examples of entanglement measures

Example 1: Relative entanglement entropy [Lindblad 1972, Uhlmann 1977, Plenio, Vedral 1998,...]:

ER(ω) = inf
σ separable

H(ω, σ) .

Here in type I case, H(ω, σ) = Tr(ρω ln ρω − ρω ln ρσ) = Umegaki’s relative
entropy. General v. Neumann algebras [Araki 1970s], see below.

Example 2: Distillable entanglement [Rains 2000]:

ED(ω) = ln
(
max. number of Bell-pairs extractable

via separable operations from N copies of ω
)/

copy

Example 3: Mutual information [Schrödinger]:

EI(ω) = H(ω, ωA ⊗ ωB) (1)

where ωA = ω ↾ AA etc.



Examples of entanglement measures

Example 4: Bell correlations [Bell 1964, Tsirelson 1980, Summers & Werner 1987 ...]

Example 5: Logarithmic dominance [SH & Sanders 2017, Datta 2009]:

EN (ω) = ln
(
inf{∥σ∥ | σ ≥ ω, σ separable}

)

Example 6: Modular entanglement [SH & Sanders 2017]:

EM (ω) = ln
(
min(∥ΨA∥1, ∥ΨB∥1)

)
(2)

where ΨA : AA → H given by a 7→ ∆1/4a|Ω⟩, |Ω⟩ is the GNS-vector
representing ω and ∆ is the modular operator for the commutant of AB

(Here ∥ . ∥1 is the 1-norm of a linear map.)

Many other examples [Otani & Tanimoto 2017, Christiandl et al. 2004, ...]!



Uniqueness?

For pure states one has basic fact [Donald, Horodecki, Rudolph 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with relative
entanglement entropy.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!



Some relationships [SH & Sanders 2017]

Measure Properties Relationships E(ω+
n )

EB OK
√
2

ED OK ED ≤ ER, EN , EM , EI lnn

ER OK ED ≤ ER ≤ EN , EM , EI lnn

EN OK ED, ER ≤ EN ≤ EM lnn

EM mostly OK ED, ER, EN ≤ EM
3
2 lnn

EI some OK ED, ER ≤ EI 2 lnn

(Here ω+
n =Bell state from Example 2)



Modular theory I

Modular theory is a key structural tool in v. Neumann algebra theory. If M is
a v. Neumann algebra on H with cyclic and separating vector |Ω⟩, then one
defines S as (a ∈ M),

Sωa|Ω⟩ = a∗|Ω⟩, Sω = J∆1/2 polar decomposition. (3)

Similarly, given two such states, one defines Sω,ω′a|Ω′⟩ = a∗|Ω⟩, with
corresponding polar decomposition (→ relative modular operator).

Modular (Tomita-Takesaki-) theory

The structural properties of ∆ (modular operator) imply many properties of
the corresponding entanglement measures such as EM , ER, EI .



Modular theory II

Modular theory

Some structural properties of ∆ (modular operator):

1. σt(a) = ∆ita∆−it leaves M invariant. In QFT, if M = A(O) for certain
special O, ω = vacuum, then σt generates the action of spacetime
symmetries [Bisognano & Wichmann 1976, Hislop & Longo 1982, Brunetti, Guido & Longo 1993].

2. ω 7→ ∥∆α
ωaΩ∥2 is a concave functional on states for 0 < α < 1/2

(WYDL concavity).

3. If M1 ⊂ M2 then ∆α
2 ≤ ∆α

1 (Löwner’s theorem)

4. KMS-property: z 7→ ω(aσz(b)) can be extended to an analytic function
in strip 0 < ℑ(z) < 1 and the boundary values satisfy
ω(aσt+i(b)) = ω(σt(b)a).

There are similar properties for the relative modular operator. The relative
entropy is related by

H(ω, ω′) = ⟨Ω| ln∆ω,ω′Ω⟩.



Some results

Some results [SH & Sanders 2017]:

1. d+ 1-dimensional CFTs

2. An exact result in 1 + 1 CFT [Longo & Xu 2018, Casini & Huerta 2009]

3. Locality of entanglement [SH 2018 (to appear)]

4. Origin of “area law”

5. Exponential decay

6. Charged states

7. 1 + 1-dimensional integrable models



CFTs

B

A

xA−

xA+

xB+

xB−

Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

u =
(xB+ − xB−)

2(xA+ − xA−)
2

(xA− − xB−)2(xA+ − xB+)2
> 0

(v similarly) and set

θ = cosh−1

(
1√
v
− 1√

u

)
, τ = cosh−1

(
1√
v
+

1√
u

)
.



Upper bound

For vacuum state ω0 in any 3 + 1 dimensional CFT with local operators {O}
of dimensions dO and spins SL,R

O :

EM (ω0) ≤ ln
∑
O

e−τdO [2SR
O + 1]θ[2S

L
O + 1]θ ,

with [n]θ = (enθ/2 − e−nθ/2)/(eθ/2 − e−θ/2).

A

B

r

R

Figure: The regions A and B.

For concentric diamonds with radii
R ≫ r this gives

ER(ω0) ≤ EM (ω0) ≲ NO

( r

R

)dO
,

where O = operator with the
smallest dimension dO and NO = its
multiplicity.

Tools: Hislop-Longo theorem, Tomita-Takesaki theory



Exact result in 1+1

An exact result was recently obtained by [Longo & Xu 2018] building on previous
ideas of [Casini & Huerta 2009, Calabrese, Cardy, Tonni 2009/11]. They prove rigorously that for a
free Dirac field on a lightray (or related theories via canonical constructions
in CFT):

Free fermions
For A,B = union of disjoint intervals, dist(A,B) > 0, one has

EI(ω0) = − c

3
lnu

where u is the analogue of the conformally invariant cross ratio (on light ray),
and where ω0 is vacuum (and c = 1/2 for free fermion).

As a consequence, ER(ω0) ≤ − c
3 lnu.

Ingredients of proof: CAR, Kosaki-formula, ...



Locality of entanglement I

A

BC

r

1
0

Figure: The regions A,B,C .

Consider regions B,C touching at the
origin of Minkowski. A ⊂ B′ is a
diamond of radius r < 1 whose
center is at distance = 1 away from
origin. λA = scaled diamond.
Assume: QFT has scaling limit which
is a CFT.

Theorem [SH in preparation]

If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B
and C touch, then as λ → 0,∣∣∣∣EM (ωλA⊗C)− EM (ωλA⊗B)

∣∣∣∣ ≤ cst. (kλ)
1
2 ZCFT(τ = cosh−1 r−1)

for some explicit constant.



Locality of entanglement I

λA

BC

λr
λ

0

Figure: The regions λA,B,C .

Consider regions B,C touching at the
origin of Minkowski. A ⊂ B′ is a
diamond of radius r < 1 whose
center is at distance = 1 away from
origin. λA = scaled diamond.
Assume: QFT has scaling limit which
is a CFT.

Theorem [SH in preparation]

If k is the largest eigenvalue of the extrinsic curvature tensor of ∂B where B
and C touch, then as λ → 0,∣∣∣∣EM (ωλA⊗C)− EM (ωλA⊗B)

∣∣∣∣ ≤ cst. (kλ)
1
2 ZCFT(τ = cosh−1 r−1)

for some explicit constant.



Locality of entanglement I

Remark: I conjecture that upper bound is optimal. If B and C touch at a
point of a bifurcate Killing horizon, then upper bound is same with only
change (kλ)

κ
2 with κ the surface gravity of bh.

ho
riz
on

H
+

horizon
H

−

H
+

H
−

inf
ini
ty

I
−

infinity I −

bifurcation surface

Figure: Spacetime with bifurcate Killing horizon.



Locality of entanglement II

How might one prove such a theorem? At the heart of the proof is the
following general result (for a related result see [Fredenhagen 1985]):

Key lemma [SH in preparation]

Let M1 ⊂ M2 with common cyclic and separating |Ω⟩. Assume
σ2,t(a) ∈ M1 for |t| ≤ τ for some a ∈ M1. Then for 0 < α < 1/2,

0 ≤ ∥∆α
1aΩ∥2 − ∥∆α

2aΩ∥2 ≤ cst. (1 + πτ)e−πτ∥∆α
2aΩ∥2 (4)

for some explicit constant dep. on α.

The proof of the theorem is obtained by combining this lemma with:

▶ The Bisognano-Wichmann theorem, choosing C to be a half-plane and
M1 = A′

C ,M2 = A′
B . Then τ ∼ | ln(kλ)|/2π can be estimated for

a ∈ AλA since modular flow of C has geometric nature.
▶ Basic properties of the nuclear 1-norm.
▶ Previous estimates of EM in CFTs.



Free massive QFTs

A and B regions in a static time
slice in ultra-static spacetime,
ds2 = −dt2 + h(space); lowest
energy state: ω0. Geodesic
distance: r

A

B

r

Figure: The the systems A,B

Upper bounds (decay + area law)

Dirac field: As r → 0

ER(ω0) ≲ cst.| ln(mr)|
∑

j≥d−1

r−j

∫
∂A

aj

where aj curvature invariants of ∂A. Lowest order =⇒ area law.
Klein-Gordon field: As r → ∞ decay

ER(ω0) ≲ cst.e−mr/2

(Dirac: [Islam, SH & Sanders])



Proof of exponential decay:

1. First show that

ER(ω0) ≤ −4
∑
±

Tr ln(1− |(1−QB′∓)QA±|
1
2 )

for certain projection operators onto subspaces of L2(C) associated w/
A,B′ (→ modular theory).

2. Then show that the estimation boils down to that of operator norms

∥CαχAC
β(1− χB)∥

where C = (−∇2
C +m2)−1, where α, β ∈ R (depending on the

dimension). χA is a smoothed out indicator function of A, similarly B.

3. Use “finite propagation speed” [Fefferman et al. 1986] property of
exp it(−∇2

C +m2)1/2 and Fourier representation
(X2 + λ2)α =

∫
dtf(t)eitX . Integration range for t effectively cut off to

|t| > r. ⇒ exponential decay in r.



We expect our methods to yield similar results to hold generally on
spacetimes with bifurcate Killing horizon:

ho
riz
on

H
+

horizon
H

−

H
+

H
−

system OBsystem OA

inf
ini
ty

I
−

infinity I −

bifurcation surface

r

Figure: Spacetime with bifurcate Killing horizon.



Charged states

A and B regions, ω any normal
state in a QFT in d+ 1 dim.
χ∗ω state obtained by adding
“charges” χ in A or B.

A

B

charges χi

Figure: Adding charges to state in A

Upper bound

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

∏
i

dim(χi)
2ni ,

ni: # irreducible charges χi type i, and

dim(χi) = quantum dimension =
√

Jones index

Remark: Same inequality for EM .
Index-statistics theorem [Longo 1989/90], Jones subfactor theory, Pimsner-Popa-inequality, Doplicher-Haag-Roberts theory; Naaijkens talk



Examples

Example: d = 1, Minimal model type (p, p+ 1), χ irreducible charge of
type (n,m)

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

sin
(
π(p+1)m

p

)
sin

(
πpn
p+1

)
sin

(
π(p+1)

p

)
sin

(
πp
p+1

) .

Example: d > 1, general QFT, irreducible charge χ with Young tableaux

statistics
8 6 5 4 2 1
5 3 2 1
1

.

0 ≤ ER(ω)− ER(χ
∗ω) ≤ 2 ln 5, 945, 940



Area law in asymptotically free QFTs

A and B regions separated by a
thin corridor of diameter ε > 0
in d+ 1 dimensional Minkowski
spacetime, vacuum ω0 =
vacuum.

ε

BiB

AiA

Figure: The the systems A,B

Result (“area law”)

Asymptotically, as ε → 0

ER(ω0) ≳
{
D2 · |∂A|/εd−1 d > 1,

D2 · ln min(|A|,|B|)
ε d = 1,

where D2 = distillable entropy ED of an elementary “Cbit” pair

Tools: Strong super additivity of ED , bounds [Donald, Horodecki, Rudolph 2002], also [Verch, Werner 2005, Wolf, Werner

2001/06,HHorodecki 1999]



Integrable models

These models (i.e. their algebras AA) are constructed using an “inverse
scattering” method from their 2-body S-matrix, e.g.

S2(θ) =

2N+1∏
k=1

sinh θ − i sin bk
sinh θ + i sin bk

,

by [Schroer & Wiesbrock 2000, Buchholz & Lechner 2004, Lechner 2008, Allazawi & Lechner 2016, Cadamuro & Tanimoto 2016].
bi = parameters specifying model, e.g. sinh-Gordon model (N = 0).

t

xr
2− r

2
AB

OAOB

Figure: The regions A,B.



Upper bound

For vacuum state ω0 and mass m > 0:

ER(ω0) ≤ EM (ω0) ≲ cst.e−mr(1−k) .

for mr ≫ 1. The constant depends on the scattering matrix S2, and k > 0.

Idea of the proof: EM is related to the log of the 1-norm of the linear map

AA ∋ a 7→ ∆1/4a|Ω⟩ ∈ H,

where ∆ is the modular operator of B′. The corresponding modular flow
acts geometrically by Bisognano-Wichmann. In fact, the norm can be
estimated explicitly using an explicit construction of the operator algebras
AA,AB on the S2-symmetric Fock space H, relying on techniques of [Lechner

2008, Allazawi & Lechner 2016]



In this talk, I have
▶ Explained what entanglement is, and how it can be used.
▶ Explained what an entanglement measure is, and given concrete

examples
▶ Explained how entanglement arises in Quantum Field Theory, and why

there always has to be a finite safety corridor between the systems.
▶ Evaluated (in the sense of upper and lower bounds) a particularly

natural entanglement measure in several geometrical setups, quantum
field theories and states of interest.

▶ Given some idea how modular theory (Tomita-Takesaki theory) comes
in.

Worth further study: relation with the considerable literature on v.
Neumann entropy in the theoretical physics literature! Especially:

▶ 2d CFTs Calabrese, Cardy, Nozaki, Numasawa,Takayanagi,...

▶ 2d integrable models Calabrese, Cardy, Doyon, ...

▶ Modular theory, c-theorems: Casini, Huerta,...

▶ Holographic methods Hubeny, Myers, Rangamani, Ryu, Takayanagi,...


