Locality and a bound on entanglement assistance to classical communication

Mihály Weiner

(work in progress; joint with P.E. Frenkel)
Quantum Information and Operator Algebras
Rome, 16 february 2018

2 headed oracles

2 headed oracles

2 headed oracles

2 headed oracles

user's point of view:

2 headed oracles

user's point of view: $p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)$

2 headed oracles

user's point of view: $p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)$
\Rightarrow a point in $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$

2 headed oracles

user's point of view: $p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)$
\Rightarrow a point in $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$
\Rightarrow all 2-headed oracles form a polytope

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical:

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical: $\quad p_{I}\left(z_{1} \mid x_{1}\right) p_{I I}\left(z_{2} \mid x_{2}\right)$

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical: $\quad p_{I, \lambda}\left(z_{1} \mid x_{1}\right) p_{I I, \lambda}\left(z_{2} \mid x_{2}\right)$

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical: $\int p_{I, \lambda}\left(z_{1} \mid x_{1}\right) p_{I I, \lambda}\left(z_{2} \mid x_{2}\right) d \mu(\lambda)$

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical: $\int p_{I, \lambda}\left(z_{1} \mid x_{1}\right) p_{I I, \lambda}\left(z_{2} \mid x_{2}\right) d \mu(\lambda)$
- Quantum: $\varphi\left(A_{x_{1}, z_{1}} B_{x_{2}, z_{2}}\right)$

Realizations

$$
p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=?
$$

- Classical: $\int p_{I, \lambda}\left(z_{1} \mid x_{1}\right) p_{I I, \lambda}\left(z_{2} \mid x_{2}\right) d \mu(\lambda)$
- Quantum: $\varphi\left(A_{x_{1}, z_{1}} B_{x_{2}, z_{2}}\right)$ where
- φ is a positive normalized functional
- $A_{x_{1}, z_{1}} \geq 0, \sum_{z_{1}} A_{x_{1}, z_{1}}=I$ \& sim. cond. for B
- $\left[A_{x_{1}, z_{1}}, B_{x_{2}, z_{2}}\right]=0$

No-signaling

Input at 1 should have no effect on output at 2 :

No-signaling

Input at 1 should have no effect on output at 2 :

$$
p\left(Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

No-signaling

Input at 1 should have no effect on output at 2 :

$$
p\left(Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

No-signaling

Input at 1 should have no effect on output at 2 :

$$
p\left(Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=p\left(Z_{2}=z_{2} \mid X_{1}=\tilde{x}_{1}, X_{2}=x_{2}\right)
$$

No-signaling

Input at 1 should have no effect on output at 2 :

$$
p\left(Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

No-signaling

Input at 1 should have no effect on output at 2 :

$$
\sum_{z_{1}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

No-signaling

Input at 1 should have no effect on output at 2 :
$\sum_{z_{1}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=$ func. of $z_{2} \& x_{2}$ only

No-signaling

Input at 1 should have no effect on output at 2 :
$\sum_{z_{1}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=$ func. of $z_{2} \& x_{2}$ only
Input at 2 should have no effect on output at 1 :

No-signaling

Input at 1 should have no effect on output at 2 :

$$
\sum_{z_{1}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\text { func. of } z_{2} \& x_{2} \text { only }
$$

Input at 2 should have no effect on output at 1 :

$$
\sum_{z_{2}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\text { func. of } z_{1} \& x_{1} \text { only }
$$

No-signaling

Input at 1 should have no effect on output at 2 :

$$
\sum_{z_{1}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\text { func. of } z_{2} \& x_{2} \text { only }
$$

Input at 2 should have no effect on output at 1 :

$$
\sum_{z_{2}} p\left(Z_{1}=z_{1}, Z_{2}=z_{2} \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\text { func. of } z_{1} \& x_{1} \text { only }
$$

$~ " N S-o r a c l e " \in$ "No-signaling polytope"

No-signaling \supsetneq quantum

No-signaling polytope:

No-signaling \supsetneq quantum

No-signaling polytope:

No-signaling \supsetneq quantum

No-signaling polytope:

Information Causality

Information Causality

d: n cbits data \Downarrow

Information Causality

d: n cbits data \Downarrow

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

Information Causality

d: n cbits data \Downarrow

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

$$
\Downarrow \Rightarrow \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \text { m cbits help } \Rightarrow
$$

Information Causality

d: n cbits data \Downarrow

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

$$
\Downarrow \Rightarrow \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \text { m cbits help } \Rightarrow \text { 介 }
$$

Information Causality

d: n cbits data \Downarrow

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

$$
I\left(d_{k}: g \mid r=k\right)
$$

Information Causality

$\underset{\Downarrow}{d}: \mathrm{n}^{\Downarrow}$ cbits data

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

$$
\begin{aligned}
& \Downarrow \Rightarrow \Rightarrow \Rightarrow \stackrel{h}{\Downarrow}: \stackrel{\text { cbits help }}{\Rightarrow} \Rightarrow \Rightarrow \\
& \sum_{k=1}^{n} I\left(d_{k}: g \mid r=k\right)
\end{aligned}
$$

Information Causality

$\xrightarrow{d}: \underset{ }{\Downarrow}$ n cbits data

$$
r \in \underset{\Downarrow}{\{ } 1, \ldots n\}
$$

$$
\begin{aligned}
& \Downarrow \Rightarrow \Rightarrow \Rightarrow \stackrel{h}{\Downarrow}: \stackrel{\text { cbits help }}{\Rightarrow} \Rightarrow \Rightarrow \\
& \sum_{k=1}^{n} I\left(d_{k}: g \mid r=k\right) \leq m
\end{aligned}
$$

Information Causality

Information Causality was proposed by Pawlowski, Paterek, Kaszlikowski, Scarani, Winter and Zukowski (Nature, 2009)

Information Causality

Information Causality was proposed by Pawlowski, Paterek, Kaszlikowski, Scarani, Winter and Zukowski (Nature, 2009)

- holds in the classical

Information Causality

Information Causality was proposed by Pawlowski, Paterek, Kaszlikowski, Scarani, Winter and Zukowski (Nature, 2009)

- holds in the classical / quantum case (nontrivial!)

Information Causality

Information Causality was proposed by Pawlowski, Paterek, Kaszlikowski, Scarani, Winter and Zukowski (Nature, 2009)

- holds in the classical / quantum case (nontrivial!)
- sometimes one needs to consider very high values of n, m to rule out a specific ns-oracle

Information Causality

Information Causality was proposed by Pawlowski, Paterek, Kaszlikowski, Scarani, Winter and Zukowski (Nature, 2009)

- holds in the classical / quantum case (nontrivial!)
- sometimes one needs to consider very high values of n, m to rule out a specific ns-oracle
- implies the Tsirelson-bound

Task: information sending

- $X \sim Z$ is a classical channel

Task: information sending

X
\Downarrow

$$
\Downarrow \Rightarrow \Rightarrow \Rightarrow \stackrel{m \text { cbits }}{\Rightarrow} \Rightarrow \Rightarrow \Rightarrow
$$

- $X \sim Z$ is a classical channel
- $\sum_{x} p(Z=X \mid X=x)$

Task: information sending

- $X \sim Z$ is a classical channel
- $\sum_{x} p(Z=X \mid X=x) \leq 2^{m}$ (i.e. no ns-oracle can help here)

Task: information sending

X
\Downarrow

$$
\Downarrow \Rightarrow \Rightarrow \overrightarrow{m \text { cbits }} \Rightarrow \Rightarrow \Rightarrow \Rightarrow
$$

- $X \sim Z$ is a classical channel
- $\sum_{x} p(Z=X \mid X=x) \leq 2^{m}$ (i.e. no ns-oracle can help here)
- $C \leq m$

Task: information sending

- $X \sim Z$ is a classical channel
- $\sum_{x} p(Z=X \mid X=x) \leq 2^{m}$ (i.e. no ns-oracle can help here)
- $C \leq m$ (i.e. again, no ns-oracle can help here)

An example

shown to Alice

An example

shown to Alice
Z : choice of Bob (only one can be taken!)

An example

 shown to Alice
Z : choice of Bob (only one can be taken!)
$m=1$ cbit is allowed to be transmitted

An example

shown to Alice
Z : choice of Bob (only one can be taken!)
$m=1$ cbit is allowed to be transmitted
without oracle: $\max (p(\operatorname{win}))=\frac{5}{6}$

An example

 shown to Alice
Z : choice of Bob (only one can be taken!)
$m=1$ cbit is allowed to be transmitted
without oracle: $\max (p(\operatorname{win}))=\frac{5}{6}$
with $\uparrow \downarrow$ shared previously, $p($ win $)=\frac{4+\sqrt{2}}{6}$ is achievable

An example

shown to Alice
Z : choice of Bob (only one can be taken!)
$m=1$ cbit is allowed to be transmitted
without oracle: $\max (p(\operatorname{win}))=\frac{5}{6}$
with $\uparrow \downarrow$ shared previously, $p($ win $)=\frac{4+\sqrt{2}}{6}$ is achievable
with a PR-box, $p($ win $)=1$ is achievable!

Exact classical simulation

Definition

$C_{j, k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical t-level system (that is, $m=\log _{2}(t)$ cbits) and using a common source of randomness

Exact classical simulation

Definition

$C_{j, k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical t-level system (that is, $m=\log _{2}(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow \downarrow$, Alice and Bob actually realized a 6×4 channel matrix $\notin C_{6,4}(2)$

Exact classical simulation

Definition

$C_{j, k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical t-level system (that is, $m=\log _{2}(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow \downarrow$, Alice and Bob actually realized a 6×4 channel matrix $\notin C_{6,4}(2)$

But e.g. $C_{3,3}(2)$ is characterized by the "trivial inequalities"

$$
\sum_{k=1}^{3} p(\sigma(k) \mid k) \leq 2 \quad \forall \sigma \in \operatorname{Perm}\{1,2,3\}
$$

Exact classical simulation

Definition

$C_{j, k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical t-level system (that is, $m=\log _{2}(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow \downarrow$, Alice and Bob actually realized a 6×4 channel matrix $\notin C_{6,4}(2)$

But e.g. $C_{3,3}(2)$ is characterized by the "trivial inequalities"

$$
\sum_{k=1}^{3} p(\sigma(k) \mid k) \leq 2 \quad \forall \sigma \in \operatorname{Perm}\{1,2,3\}
$$

In a game with 3 inputs / outputs, ns-oracles can be of any help

Classical capacities of convex bodies

state space \leadsto a convex body K; e.g. classical simplices

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

quantum case: $S_{1}^{+}\left(\mathbb{C}^{d}\right)$, or more gen.: states of a v.N. algebra

Classical capacities of convex bodies

state space \sim a convex body K; e.g. classical simplices

quantum case: $S_{1}^{+}\left(\mathbb{C}^{d}\right)$, or more gen.: states of a v.N. algebra measurement with r poss. outcomes $\leadsto K \xrightarrow{\text { affine } r \text {-simplex }}$ e.g. in quantum case $S_{1}^{+}\left(\mathbb{C}^{d}\right) \ni \rho \mapsto\left(\operatorname{Tr}\left(\rho E_{1}\right), \ldots \operatorname{Tr}\left(\rho E_{r}\right)\right)$

Classical capacities of convex bodies

state space \leadsto a convex body K; e.g. classical simplices

quantum case: $S_{1}^{+}\left(\mathbb{C}^{d}\right)$, or more gen.: states of a v.N. algebra measurement with r poss. outcomes $\leadsto K \xrightarrow{\text { affine }} r$-simplex e.g. in quantum case $S_{1}^{+}\left(\mathbb{C}^{d}\right) \ni \rho \mapsto\left(\operatorname{Tr}\left(\rho E_{1}\right), \ldots \operatorname{Tr}\left(\rho E_{r}\right)\right)$

Question:

what is the minimum t value for which $C_{j, k}(t)$ contains all $j \times k$ channel matrices realizable by transmitting a single isolated system whose state space is K ?

Classical capacity of convex bodies

In general, $C_{j, k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log _{2}(t)$

Thus, even for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, the question is nontrivial!

Classical capacity of convex bodies

In general, $C_{j, k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log _{2}(t)$

Thus, even for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, the question is nontrivial! F.-W. (2015): for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$ this minimal t value is d

Classical capacity of convex bodies

In general, $C_{j, k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log _{2}(t)$

Thus, even for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, the question is nontrivia!! F.-W. (2015): for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$ this minimal t value is d

Question

For a qbit, $K=3$-dim ball. What else it could be? For what K it is true, that the resulting set of $j \times k$ channel matrices always coincides with $C_{j, k}(2)$?

Classical capacity of convex bodies

In general, $C_{j, k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log _{2}(t)$

Thus, even for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, the question is nontrivial! F.-W. (2015): for $K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$ this minimal t value is d

Question

For a qbit, $K=3$-dim ball. What else it could be? For what K it is true, that the resulting set of $j \times k$ channel matrices always coincides with $C_{j, k}(2)$?

Answer ${ }^{(2)}$

A lot of other bodies would be still ok; nothing specific about the 3-dim ball. E.g. \square is also a "1-bit space".

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on I

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part $I I$ is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on $I \sim q$ "changes" to $q_{z_{1}}^{x_{1}} \in K$

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part $I I$ is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on $I \sim q$ "changes" to $q_{z_{1}}^{x_{1}} \in K$
- ns-condition: $\sum_{z_{1}} p\left(z_{1} \mid x_{1}\right) q_{z_{1}}^{x_{1}}=q$

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part $I I$ is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on $I \sim q$ "changes" to $q_{z_{1}}^{x_{1}} \in K$
- ns-condition: $\sum_{z_{1}} p\left(z_{1} \mid x_{1}\right) q_{z_{1}}^{x_{1}}=q$
- x_{2} measurement on II: $\Phi^{x_{2}}: K \xrightarrow{\text { affine }}$ simplex

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part $I I$ is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on $I \sim q$ "changes" to $q_{z_{1}}^{x_{1}} \in K$
- ns-condition: $\sum_{z_{1}} p\left(z_{1} \mid x_{1}\right) q_{z_{1}}^{x_{1}}=q$
- x_{2} measurement on II: $\Phi^{x_{2}}: K \xrightarrow{\text { affine }}$ simplex
- $p\left(z_{1}, z_{2} \mid x_{1}, x_{2}\right)=\Phi_{z_{2}}^{x_{2}}\left(q_{z_{1}}^{x_{1}}\right)$

From one part to bipartite

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part $I I$ is $q \in K$.

- $x_{1} \rightarrow z_{1}$ measurement on $I \sim q$ "changes" to $q_{z_{1}}^{x_{1}} \in K$
- ns-condition: $\sum_{z_{1}} p\left(z_{1} \mid x_{1}\right) q_{z_{1}}^{x_{1}}=q$
- x_{2} measurement on II: $\Phi^{x_{2}}: K \xrightarrow{\text { affine }}$ simplex
- $p\left(z_{1}, z_{2} \mid x_{1}, x_{2}\right)=\Phi_{z_{2}}^{x_{2}}\left(q_{z_{1}}^{x_{1}}\right)$

Conclusion

Considering all "initial states" $q \in K$ together with every convex decomposition of it + every possible $K \xrightarrow{\text { affine }}$ simplex map we can construct the set of all possible ns-oracles arising from bipartite physical systems where one part has state space K.

From one part to bipartite

Further considerations:

From one part to bipartite

Further considerations:

- Other conditions on realizability? (E.g. regarding the state space of the other part.)

From one part to bipartite

Further considerations:

- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When $K=$ simplex $/ K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, this construction gives precisely the set of classical / quantum ns-oracles.

From one part to bipartite

Further considerations:

- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When $K=$ simplex $/ K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, this construction gives precisely the set of classical / quantum ns-oracles.
\hookrightarrow Taken as a "principle" / "law of nature", we get that everything is decided by specifying the state space of just one part!

From one part to bipartite

Further considerations:

- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When $K=$ simplex $/ K=S_{1}^{+}\left(\mathbb{C}^{d}\right)$, this construction gives precisely the set of classical / quantum ns-oracles.
\hookrightarrow Taken as a "principle" / "law of nature", we get that everything is decided by specifying the state space of just one part!
\hookrightarrow Further restrictions on what the state space of a 1-bit system can be. E.g. $K=\square$ would allow realization of the PR-box.

Nontrivial bounds: results

Nontrivial bounds: results

- if $=$ bipartite quant. sys. in state ρ and $\rho_{I I}=\operatorname{Tr}_{l}(\rho)$ is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1

Nontrivial bounds: results

- if $=$ bipartite quant. sys. in state ρ and $\rho_{I I}=\operatorname{Tr}_{l}(\rho)$ is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1
- $\forall n \exists$ example with some ns-oracle that cannot be simulated classically even if we allow n cbits to be sent instead of 1

Nontrivial bounds: results

- if $=$ bipartite quant. sys. in state ρ and $\rho_{I I}=\operatorname{Tr}_{l}(\rho)$ is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1
- $\forall n \exists$ example with some ns-oracle that cannot be simulated classically even if we allow n cbits to be sent instead of 1
- Possible principle? "God helps those who help themselves."

