Locality and a bound on entanglement assistance to classical communication

Mihály Weiner

(work in progress; joint with P.E. Frenkel)

Quantum Information and Operator Algebras Rome, 16 february 2018

2 headed oracles

A ►

æ

- 冬 医 🕨 🔍 医 🕨 👘

2 headed oracles

æ

御 と く ヨ と く ヨ と

2 headed oracles

æ

《聞》 《臣》 《臣》

user's point of view:

æ

聞き くぼき くぼき

user's point of view: $p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$

伺 とくき とくき とうき

user's point of view: $p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$

 \Rightarrow a point in $\mathbb{R}^{n_1} imes \mathbb{R}^{n_2} imes \mathbb{R}^{m_1} imes \mathbb{R}^{m_2}$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

user's point of view: $p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$

 \Rightarrow a point in $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$

 \Rightarrow all 2-headed oracles form a polytope

 $p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$

æ

・聞き ・ ほき・ ・ ほき・

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

• Classical:

æ

- 《圖》 《문》 《문》

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

• Classical: $p_{I}(z_{1}|x_{1}) p_{II}(z_{2}|x_{2})$

æ

- ∢ ⊒ →

/⊒ > < ∃ >

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

• Classical: $p_{I,\lambda}(z_1|x_1) p_{II,\lambda}(z_2|x_2)$

æ

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

• Classical: $\int p_{I,\lambda}(z_1|x_1) p_{II,\lambda}(z_2|x_2) d\mu(\lambda)$

æ

伺 ト く ヨ ト く ヨ ト

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

- Classical: $\int p_{I,\lambda}(z_1|x_1) p_{II,\lambda}(z_2|x_2) d\mu(\lambda)$
- Quantum: $\varphi(A_{x_1,z_1}B_{x_2,z_2})$

æ

$$p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = ?$$

- Classical: $\int p_{l,\lambda}(z_1|x_1) p_{l,\lambda}(z_2|x_2) d\mu(\lambda)$
- Quantum: $\varphi(A_{x_1,z_1}B_{x_2,z_2})$ where
 - φ is a positive normalized functional
 - $A_{x_1,z_1} \geq 0, \sum_{z_1} A_{x_1,z_1} = I$ & sim. cond. for B

•
$$[A_{x_1,z_1}, B_{x_2,z_2}] = 0$$

3

回 とくほ とくほ とう

$$p(Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$$

$$p(Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$$

$$p(Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = p(Z_2 = z_2 | X_1 = \tilde{x}_1, X_2 = x_2)$$

$$p(Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$$

$$\sum_{z_1} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2)$$

伺 ト イヨト イヨト

4/15

$$\sum_{z_1} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_2 \& x_2 \text{ only}$$

$$\sum_{z_1} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_2 \& x_2 \text{ only}$$

Input at 2 should have no effect on output at 1:

A D

4/15

$$\sum_{z_1} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_2 \& x_2 \text{ only}$$

Input at 2 should have no effect on output at 1:

$$\sum_{z_2} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_1 \& x_1 \text{ only}$$

A D

4/15

$$\sum_{z_1} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_2 \& x_2 \text{ only}$$

Input at 2 should have no effect on output at 1:

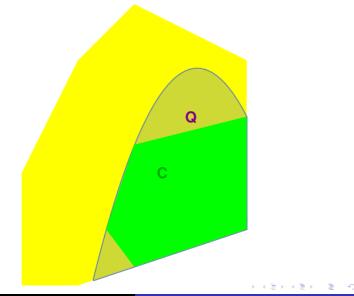
$$\sum_{z_2} p(Z_1 = z_1, Z_2 = z_2 | X_1 = x_1, X_2 = x_2) = \text{func. of } z_1 \& x_1 \text{ only}$$

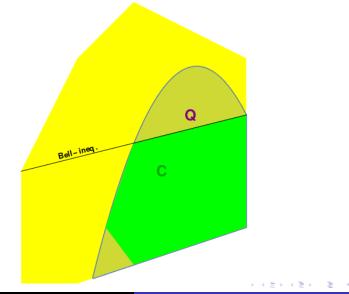
 \rightsquigarrow "NS-oracle" \in "No-signaling polytope"

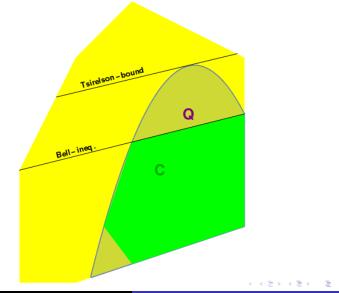
No-signaling polytope:

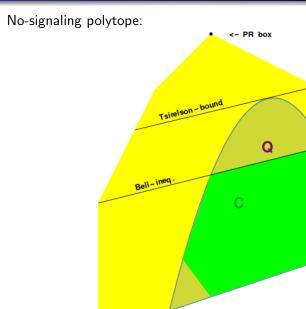
С

э









æ

> < 문 > < 문 >

< ∃ →

1

э

< ∃ >

∜

3 N 3

∜

문 🛌 문

$$\stackrel{\Downarrow}{\qquad} \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad$$

< ∃ →

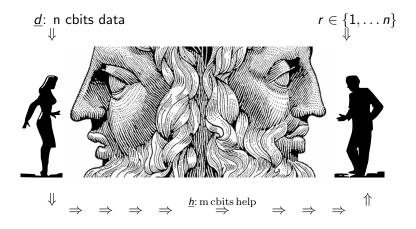
 $^{\prime\prime} \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$

문 🛌 문

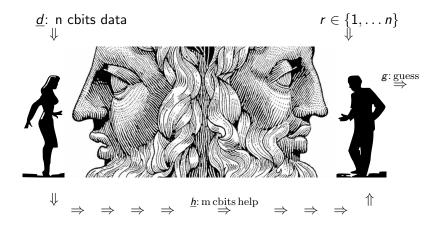
< ∃ →

< ∃ →

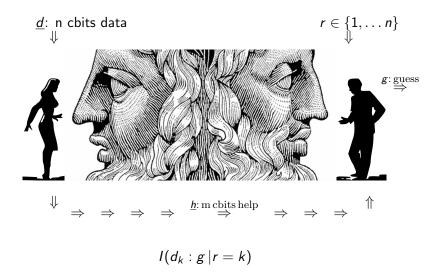
- ∢ ≣ ▶



글 🖌 🖌 글 🕨

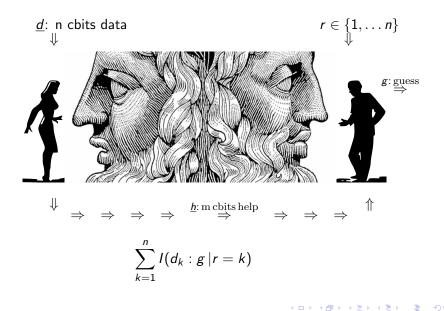


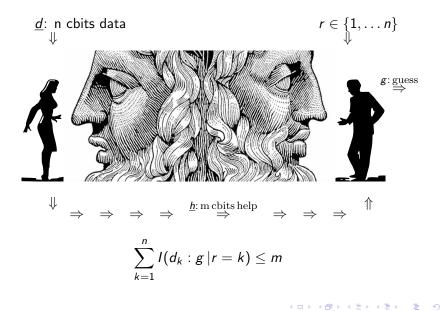
글 🖌 🖌 글 🕨



< ∃ >

< ≣ ►





holds in the classical

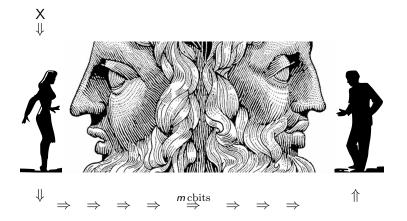
• holds in the classical / quantum case (nontrivial!)

- holds in the classical / quantum case (nontrivial!)
- sometimes one needs to consider very high values of *n*, *m* to rule out a specific ns-oracle

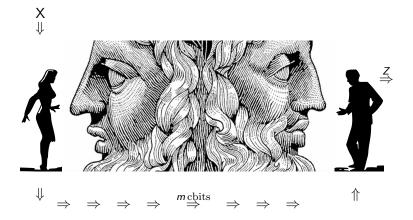
- holds in the classical / quantum case (nontrivial!)
- sometimes one needs to consider very high values of *n*, *m* to rule out a specific ns-oracle
- implies the Tsirelson-bound

∃ >

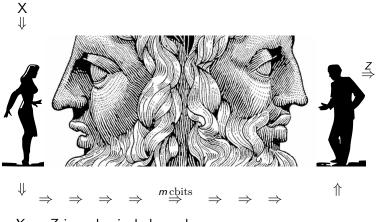
∃ >



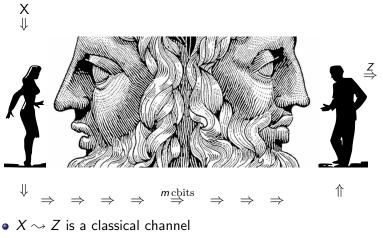
э



э

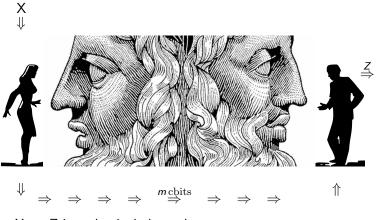


• $X \rightsquigarrow Z$ is a classical channel

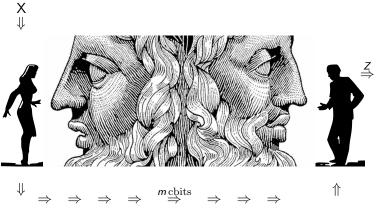


• $\sum_{x} p(Z = X | X = x)$

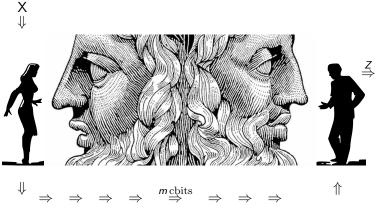
∃ >



- $X \rightsquigarrow Z$ is a classical channel
- $\sum_{x} p(Z = X | X = x) \le 2^{m}$ (i.e. no ns-oracle can help here)



- $X \rightsquigarrow Z$ is a classical channel
- ∑_x p(Z = X | X = x)≤ 2^m (i.e. no ns-oracle can help here)
 C ≤ m



- $X \rightsquigarrow Z$ is a classical channel
- $\sum_{x} p(Z = X | X = x) \le 2^{m}$ (i.e. no ns-oracle can help here)
- $C \leq m$ (i.e. again, no ns-oracle can help here)

An example

shown to Alice

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

æ

Z : choice of Bob (only one can be taken!)

- Z : choice of Bob (only one can be taken!)
- m = 1 cbit is allowed to be transmitted

- Z : choice of Bob (only one can be taken!)
- m = 1 cbit is allowed to be transmitted

without oracle: $\max(p(\min)) = \frac{5}{6}$

Z : choice of Bob (only one can be taken!)

m = 1 cbit is allowed to be transmitted

without oracle: $\max(p(\min)) = \frac{5}{6}$

with $\uparrow\downarrow$ shared previously, $ho(\min)=rac{4+\sqrt{2}}{6}$ is achievable

Z : choice of Bob (only one can be taken!)

m = 1 cbit is allowed to be transmitted

without oracle: $\max(p(\min)) = \frac{5}{6}$

with $\uparrow\downarrow$ shared previously, $ho(\min)=rac{4+\sqrt{2}}{6}$ is achievable

with a PR-box, p(win) = 1 is achievable!

 $C_{j,k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical *t*-level system (that is, $m = \log_2(t)$ cbits) and using a common source of randomness

 $C_{j,k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical *t*-level system (that is, $m = \log_2(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow\downarrow$, Alice and Bob actually realized a 6×4 channel matrix $\notin C_{6,4}(2)$

 $C_{j,k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical *t*-level system (that is, $m = \log_2(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow\downarrow$, Alice and Bob actually realized a 6 × 4 channel matrix $\notin C_{6,4}(2)$

But e.g. $C_{3,3}(2)$ is characterized by the "trivial inequalities"

$$\sum_{k=1}^{3} p(\sigma(k)|k) \leq 2 \quad \forall \sigma \in \operatorname{Perm}\{1, 2, 3\}$$

 $C_{j,k}(t)$: set of all $j \times k$ channel matrices realizable by transmitting a classical *t*-level system (that is, $m = \log_2(t)$ cbits) and using a common source of randomness

In our example, transmitting 1 cbit + using $\uparrow\downarrow$, Alice and Bob actually realized a 6 × 4 channel matrix $\notin C_{6,4}(2)$

But e.g. $C_{3,3}(2)$ is characterized by the "trivial inequalities"

$$\sum_{k=1}^{3} p(\sigma(k)|k) \le 2 \quad \forall \sigma \in \operatorname{Perm}\{1, 2, 3\}$$

In a game with 3 inputs / outputs, ns-oracles can be of any help

Classical capacities of convex bodies

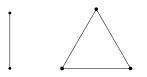
state space \rightsquigarrow a convex body K; e.g. classical simplices

Classical capacities of convex bodies

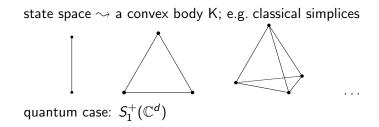
state space \rightsquigarrow a convex body K; e.g. classical simplices

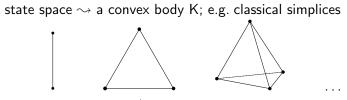
Classical capacities of convex bodies

state space \rightsquigarrow a convex body K; e.g. classical simplices

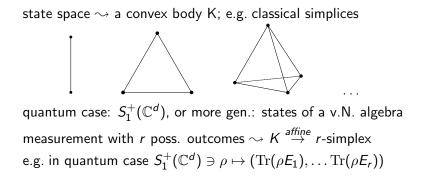


state space \rightsquigarrow a convex body K; e.g. classical simplices





quantum case: $S_1^+(\mathbb{C}^d)$, or more gen.: states of a v.N. algebra



state space \rightsquigarrow a convex body K; e.g. classical simplices understand the space \rightsquigarrow a convex body K; e.g. classical simplices understand the space $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ understand the space $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{$

Question:

what is the minimum t value for which $C_{j,k}(t)$ contains all $j \times k$ channel matrices realizable by transmitting a single isolated system whose state space is K?

In general, $C_{j,k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log_2(t)$

Thus, even for $K = S_1^+(\mathbb{C}^d)$, the question is nontrivial!

In general, $C_{j,k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log_2(t)$

Thus, even for $K = S_1^+(\mathbb{C}^d)$, the question is nontrivial! F.-W. (2015): for $K = S_1^+(\mathbb{C}^d)$ this minimal t value is d

In general, $C_{j,k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log_2(t)$

Thus, even for $K = S_1^+(\mathbb{C}^d)$, the question is nontrivial! F.-W. (2015): for $K = S_1^+(\mathbb{C}^d)$ this minimal *t* value is *d*

Question

For a qbit, K = 3-dim ball. What else it could be? For what K it is true, that the resulting set of $j \times k$ channel matrices always coincides with $C_{j,k}(2)$?

In general, $C_{j,k}(t)$ is not characterized by the "trivial" bounds and the fact that all of its elements have channel capacity $\leq \log_2(t)$

Thus, even for $K = S_1^+(\mathbb{C}^d)$, the question is nontrivial! F.-W. (2015): for $K = S_1^+(\mathbb{C}^d)$ this minimal *t* value is *d*

Question

For a qbit, K = 3-dim ball. What else it could be? For what K it is true, that the resulting set of $j \times k$ channel matrices always coincides with $C_{j,k}(2)$?

Answer 🙁

A lot of other bodies would be still ok; nothing specific about the 3-dim ball. E.g. \Box is also a "1-bit space".

Image: A image: A

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

• $x_1 \rightarrow z_1$ measurement on I

13/15

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

• $x_1 \rightarrow z_1$ measurement on $I \rightsquigarrow q$ "changes" to $q_{z_1}^{x_1} \in K$

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

- $x_1 \rightarrow z_1$ measurement on $\mathsf{I} \sim q$ "changes" to $q_{z_1}^{x_1} \in K$
- ns-condition: $\sum_{z_1} p(z_1|x_1)q_{z_1}^{x_1} = q$

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

- $x_1 \rightarrow z_1$ measurement on $\mathsf{I} \sim q$ "changes" to $q_{z_1}^{x_1} \in K$
- ns-condition: $\sum_{z_1} p(z_1|x_1)q_{z_1}^{x_1} = q$
- x_2 measurement on II: $\Phi^{x_2} : K \xrightarrow{affine}$ simplex

13/15

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

- $x_1 \rightarrow z_1$ measurement on $I \rightsquigarrow q$ "changes" to $q_{z_1}^{x_1} \in K$
- ns-condition: $\sum_{z_1} p(z_1|x_1)q_{z_1}^{x_1} = q$
- x_2 measurement on II: $\Phi^{x_2} : K \xrightarrow{affine}$ simplex

•
$$p(z_1, z_2|x_1, x_2) = \Phi_{z_2}^{x_2}(q_{z_1}^{x_1})$$

Suppose we have a bipartite physical system whose part II (in itself) has state space K. After preparation but previous to measurements, the (partial) state of part II is $q \in K$.

- $x_1 \rightarrow z_1$ measurement on $I \rightsquigarrow q$ "changes" to $q_{z_1}^{x_1} \in K$
- ns-condition: $\sum_{z_1} p(z_1|x_1)q_{z_1}^{x_1} = q$
- x_2 measurement on II: $\Phi^{x_2} : K \xrightarrow{affine}$ simplex

•
$$p(z_1, z_2|x_1, x_2) = \Phi_{z_2}^{x_2}(q_{z_1}^{x_1})$$

Conclusion

Considering all "initial states" $q \in K$ together with every convex decomposition of it + every possible $K \xrightarrow{affine}$ simplex map we can construct the set of all possible ns-oracles arising from bipartite physical systems where one part has state space K.

- 4 同 🕨 - 4 目 🕨 - 4 目

14 / 15

-∢ ≣ →

• Other conditions on realizability? (E.g. regarding the state space of the other part.)

- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When K = simplex / K = S₁⁺(ℂ^d), this construction gives precisely the set of classical / quantum ns-oracles.

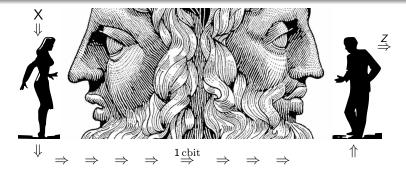
- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When K = simplex / K = S₁⁺(ℂ^d), this construction gives precisely the set of classical / quantum ns-oracles.

 \hookrightarrow Taken as a "principle" / "law of nature", we get that everything is decided by specifying the state space of just one part!

- Other conditions on realizability? (E.g. regarding the state space of the other part.)
- When K = simplex / K = S₁⁺(C^d), this construction gives precisely the set of classical / quantum ns-oracles.

 \hookrightarrow Taken as a "principle" / "law of nature", we get that everything is decided by specifying the state space of just one part!

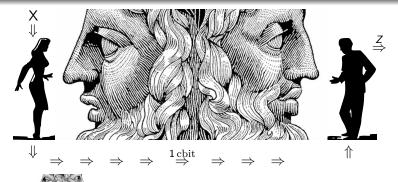
 \hookrightarrow Further restrictions on what the state space of a 1-bit system can be. E.g. $K = \Box$ would allow realization of the PR-box.



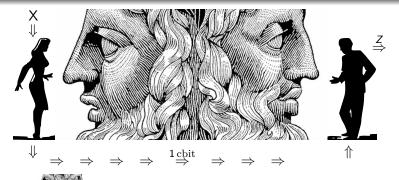
-

- ₹ 🖬 🕨

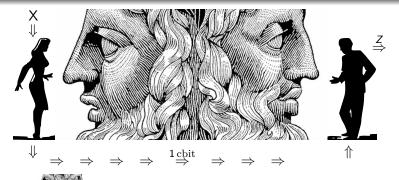
æ



• if $P_{II} = \text{bipartite quant. sys. in state } \rho \text{ and } \rho_{II} = \text{Tr}_{I}(\rho) \text{ is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1$



- if = bipartite quant. sys. in state ρ and ρ_{II} =Tr_I(ρ) is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1
- ∀*n* ∃ example with some ns-oracle that **cannot** be simulated classically even if we allow *n* cbits to be sent instead of 1



- if = bipartite quant. sys. in state ρ and ρ_{II} =Tr_I(ρ) is a multiple of a projection, then exact classical simulation is always possible with 2 cbits to be sent instead of 1
- ∀*n* ∃ example with some ns-oracle that **cannot** be simulated classically even if we allow *n* cbits to be sent instead of 1
- Possible principle? "God helps those who help themselves."